RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보 SCOPUS

      데이터 마이닝을 위한 이산화 알고리즘에 대한 비교 연구 = A Comparative Study on Discretization Algorithms for Data Mining

      한글로보기

      https://www.riss.kr/link?id=A105203890

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The discretization process that converts continuous attributes into discrete ones is a preprocessing step in data mining such as classification. Some classification algorithms can handle only discrete attributes. The purpose of discretization is to obtain discretized data without losing the information for the original data and to obtain a high predictive accuracy when discretized data are used in classification. Many discretization algorithms have been developed. This paper presents the results of our comparative study on recently proposed representative discretization algorithms from the view point of splitting versus merging and supervised versus unsupervised. We implemented R codes for discretization algorithms and made them available for public users.
      번역하기

      The discretization process that converts continuous attributes into discrete ones is a preprocessing step in data mining such as classification. Some classification algorithms can handle only discrete attributes. The purpose of discretization is to ob...

      The discretization process that converts continuous attributes into discrete ones is a preprocessing step in data mining such as classification. Some classification algorithms can handle only discrete attributes. The purpose of discretization is to obtain discretized data without losing the information for the original data and to obtain a high predictive accuracy when discretized data are used in classification. Many discretization algorithms have been developed. This paper presents the results of our comparative study on recently proposed representative discretization algorithms from the view point of splitting versus merging and supervised versus unsupervised. We implemented R codes for discretization algorithms and made them available for public users.

      더보기

      참고문헌 (Reference)

      1 Ziarko,W, "Variable precision rough set model" 46 : 39-59, 1993

      2 Jin, H, "Using AUC and accuracy in evaluating learning algorithms" 17 : 299-310, 2005

      3 Merz, C. J, "UCI repository of machine learning database, department ofinformation and computer science"

      4 Dougherty, J., "Supervised and unsupervised discretization of continuousfeatures"

      5 Pawlak,Z, "Rough sets" 11 : 341-356, 1982

      6 R Development Core Team, "R: A language and environment for statistical computing, R Foundationfor statistical computing, Vienna, Austria, ISBN 3-900051-07-0"

      7 Fayyad, U. M, "Multi-interval discretization of continuous-valued attributes forclassification learning" 13 : 1022-1027, 1993

      8 Tay, F. E. H, "Modified Chi2 algorithm for discretization" 14 : 666-670, 2002

      9 Chmielewski, M. R, "Global discretization of continuous attributes aspreprocessing for machine learning" 15 : 319-331, 1996

      10 Liu, H, "Feature selection and discretization" 9 : 642-645, 1997

      1 Ziarko,W, "Variable precision rough set model" 46 : 39-59, 1993

      2 Jin, H, "Using AUC and accuracy in evaluating learning algorithms" 17 : 299-310, 2005

      3 Merz, C. J, "UCI repository of machine learning database, department ofinformation and computer science"

      4 Dougherty, J., "Supervised and unsupervised discretization of continuousfeatures"

      5 Pawlak,Z, "Rough sets" 11 : 341-356, 1982

      6 R Development Core Team, "R: A language and environment for statistical computing, R Foundationfor statistical computing, Vienna, Austria, ISBN 3-900051-07-0"

      7 Fayyad, U. M, "Multi-interval discretization of continuous-valued attributes forclassification learning" 13 : 1022-1027, 1993

      8 Tay, F. E. H, "Modified Chi2 algorithm for discretization" 14 : 666-670, 2002

      9 Chmielewski, M. R, "Global discretization of continuous attributes aspreprocessing for machine learning" 15 : 319-331, 1996

      10 Liu, H, "Feature selection and discretization" 9 : 642-645, 1997

      11 Acuna,E, "Dprep: Data preprocessing and visualization functions for classification, R packageversion 1.0"

      12 Kim, H. J, "Discretization: Data preprocessing, discretization for classification. R package version1.0"

      13 Sotiris, K, "Discretization techiniques: A recent survey" 32 : 47-58, 2006

      14 Liu, H, "Discretization : An enabling technique" 6 : 393-423, 2002

      15 Witten, I. H, "Data Mining Practical Machine learning Tools and Techniques, Morgankaufmann"

      16 Zhaoa, Y. H, "Comparison of decision tree methods for finding active objects" 41 : 1955-1959, 2008

      17 Kerber,R, "ChiMerge: Discretization of numeric attributes" 123-128, 1992

      18 Liu, H, "Chi2: Feature selection and discretization of numeric attributes"

      19 Kurgan, L. A, "CAIM discretization algorithm" 16 : 145-153, 2004

      20 Quinlan,R, "C4.5: Programs for Machine Learning" Morgan Kaufmann Publishers Inc 1993

      21 Su, C. T, "An extended Chi2 algorithm for discretization of real value attributes" 17 : 437-441, 2005

      22 Gonzalez-Abril, L, "Ameva: An autonomous discretizationalgorithm" 36 : 5327-5332, 2009

      23 Ling, C. X., "AUC : A better measure than accuracy in comparing learningalgorithm" 2671 : 991-, 2003

      24 Tsai, C. J, "A discretization algorithm based on class-attribute contingencycoefficient" 178 : 714-731, 2008

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-12-01 평가 등재후보 탈락 (해외등재 학술지 평가)
      2020-12-01 평가 등재후보로 하락 (해외등재 학술지 평가) KCI등재후보
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2012-12-21 학술지명변경 한글명 : 한국통계학회 논문집 -> Communications for Statistical Applications and Methods
      외국어명 : Communications of The Korean Statistical Society -> Communications for Statistical Applications and Methods
      KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-02-05 학술지명변경 외국어명 : The Korean Communications in Statistics -> Communications of The Korean Statistical Society KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.19 0.19 0.17
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.14 0.15 0.392 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼