1 Ziarko,W, "Variable precision rough set model" 46 : 39-59, 1993
2 Jin, H, "Using AUC and accuracy in evaluating learning algorithms" 17 : 299-310, 2005
3 Merz, C. J, "UCI repository of machine learning database, department ofinformation and computer science"
4 Dougherty, J., "Supervised and unsupervised discretization of continuousfeatures"
5 Pawlak,Z, "Rough sets" 11 : 341-356, 1982
6 R Development Core Team, "R: A language and environment for statistical computing, R Foundationfor statistical computing, Vienna, Austria, ISBN 3-900051-07-0"
7 Fayyad, U. M, "Multi-interval discretization of continuous-valued attributes forclassification learning" 13 : 1022-1027, 1993
8 Tay, F. E. H, "Modified Chi2 algorithm for discretization" 14 : 666-670, 2002
9 Chmielewski, M. R, "Global discretization of continuous attributes aspreprocessing for machine learning" 15 : 319-331, 1996
10 Liu, H, "Feature selection and discretization" 9 : 642-645, 1997
1 Ziarko,W, "Variable precision rough set model" 46 : 39-59, 1993
2 Jin, H, "Using AUC and accuracy in evaluating learning algorithms" 17 : 299-310, 2005
3 Merz, C. J, "UCI repository of machine learning database, department ofinformation and computer science"
4 Dougherty, J., "Supervised and unsupervised discretization of continuousfeatures"
5 Pawlak,Z, "Rough sets" 11 : 341-356, 1982
6 R Development Core Team, "R: A language and environment for statistical computing, R Foundationfor statistical computing, Vienna, Austria, ISBN 3-900051-07-0"
7 Fayyad, U. M, "Multi-interval discretization of continuous-valued attributes forclassification learning" 13 : 1022-1027, 1993
8 Tay, F. E. H, "Modified Chi2 algorithm for discretization" 14 : 666-670, 2002
9 Chmielewski, M. R, "Global discretization of continuous attributes aspreprocessing for machine learning" 15 : 319-331, 1996
10 Liu, H, "Feature selection and discretization" 9 : 642-645, 1997
11 Acuna,E, "Dprep: Data preprocessing and visualization functions for classification, R packageversion 1.0"
12 Kim, H. J, "Discretization: Data preprocessing, discretization for classification. R package version1.0"
13 Sotiris, K, "Discretization techiniques: A recent survey" 32 : 47-58, 2006
14 Liu, H, "Discretization : An enabling technique" 6 : 393-423, 2002
15 Witten, I. H, "Data Mining Practical Machine learning Tools and Techniques, Morgankaufmann"
16 Zhaoa, Y. H, "Comparison of decision tree methods for finding active objects" 41 : 1955-1959, 2008
17 Kerber,R, "ChiMerge: Discretization of numeric attributes" 123-128, 1992
18 Liu, H, "Chi2: Feature selection and discretization of numeric attributes"
19 Kurgan, L. A, "CAIM discretization algorithm" 16 : 145-153, 2004
20 Quinlan,R, "C4.5: Programs for Machine Learning" Morgan Kaufmann Publishers Inc 1993
21 Su, C. T, "An extended Chi2 algorithm for discretization of real value attributes" 17 : 437-441, 2005
22 Gonzalez-Abril, L, "Ameva: An autonomous discretizationalgorithm" 36 : 5327-5332, 2009
23 Ling, C. X., "AUC : A better measure than accuracy in comparing learningalgorithm" 2671 : 991-, 2003
24 Tsai, C. J, "A discretization algorithm based on class-attribute contingencycoefficient" 178 : 714-731, 2008