RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS KCI등재

      Tensor-based tag emotion aware recommendation with probabilistic ranking = Tensor-based tag emotion aware recommendation with probabilistic ranking

      한글로보기

      https://www.riss.kr/link?id=A106529190

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In our previous research, we proposed a tag emotion-based item recommendation scheme. The ternary associations among users, items, and tags are described as a three-order tensor in order to capture the emotions in tags. The candidates for recommendation are created based on the latent semantics derived by a high-order singular value decomposition technique (HOSVD). However, the tensor is very sparse because the number of tagged items is smaller than the amount of all items. The previous research do not consider the previous behaviors of users and items. To mitigate the problems, in this paper, the item-based collaborative filtering scheme is used to build an extended data. We also apply the probabilistic ranking algorithm considering the user and item profiles to improve the recommendation performance. The proposed method is evaluated based on Movielens dataset, and the results show that our approach improves the performance compared to other methods.
      번역하기

      In our previous research, we proposed a tag emotion-based item recommendation scheme. The ternary associations among users, items, and tags are described as a three-order tensor in order to capture the emotions in tags. The candidates for recommendati...

      In our previous research, we proposed a tag emotion-based item recommendation scheme. The ternary associations among users, items, and tags are described as a three-order tensor in order to capture the emotions in tags. The candidates for recommendation are created based on the latent semantics derived by a high-order singular value decomposition technique (HOSVD). However, the tensor is very sparse because the number of tagged items is smaller than the amount of all items. The previous research do not consider the previous behaviors of users and items. To mitigate the problems, in this paper, the item-based collaborative filtering scheme is used to build an extended data. We also apply the probabilistic ranking algorithm considering the user and item profiles to improve the recommendation performance. The proposed method is evaluated based on Movielens dataset, and the results show that our approach improves the performance compared to other methods.

      더보기

      참고문헌 (Reference)

      1 M. Ames, "Why we tag : motivations for annotation in mobile and online media" 971-980, 2007

      2 O. Nov, "Why do people tag? : motivations for photo tagging" 53 (53): 128-131, 2010

      3 Z. Li, "Weakly supervised deep matrix factorization for social image understanding" 26 (26): 276-288, 2017

      4 C. L. Huang, "Utilizing user tag-based interests in recommender systems for social resource sharing websites" 56 : 86-96, 2014

      5 D. Rafailidis, "The TFC model : Tensor factorization and tag clustering for item recommendation in social tagging systems" 43 (43): 673-688, 2013

      6 N. Ifada, "Tensor-based Item Recommendation using Probabilistic Ranking in Social Tagging Systems" 805-810, 2014

      7 S. Sen, "Tagging, communities, vocabulary, evolution" 181-190, 2006

      8 K. H. L. Tso-Sutter, "Tag-aware recommender systems by fusion of collaborative filtering algorithms" 1995-1999, 2008

      9 P. Symeonidis, "Tag recommendations based on tensor dimensionality reduction" 43-50, 2008

      10 A. K. Milicevic, "Social tagging in recommender systems : A survey of the state-of-the-art and possible extensions" 33 (33): 187-209, 2010

      1 M. Ames, "Why we tag : motivations for annotation in mobile and online media" 971-980, 2007

      2 O. Nov, "Why do people tag? : motivations for photo tagging" 53 (53): 128-131, 2010

      3 Z. Li, "Weakly supervised deep matrix factorization for social image understanding" 26 (26): 276-288, 2017

      4 C. L. Huang, "Utilizing user tag-based interests in recommender systems for social resource sharing websites" 56 : 86-96, 2014

      5 D. Rafailidis, "The TFC model : Tensor factorization and tag clustering for item recommendation in social tagging systems" 43 (43): 673-688, 2013

      6 N. Ifada, "Tensor-based Item Recommendation using Probabilistic Ranking in Social Tagging Systems" 805-810, 2014

      7 S. Sen, "Tagging, communities, vocabulary, evolution" 181-190, 2006

      8 K. H. L. Tso-Sutter, "Tag-aware recommender systems by fusion of collaborative filtering algorithms" 1995-1999, 2008

      9 P. Symeonidis, "Tag recommendations based on tensor dimensionality reduction" 43-50, 2008

      10 A. K. Milicevic, "Social tagging in recommender systems : A survey of the state-of-the-art and possible extensions" 33 (33): 187-209, 2010

      11 I. Guy, "Social media recommendation based on people and tags" 194-201, 2010

      12 L. F. Spiteri, "Social cataloguing sites : features and implications for cataloguing practique and the public library catalogue" 769-785, 2009

      13 E. Cambria, "SenticNet: A Publicly Available Semantic Resource for Opinion Mining" 10 (10): 2010

      14 Z. Li, "Robust structured nonnegative matrix factorization for image representation" 29 (29): 1947-1960, 2018

      15 J. Bobadilla, "Recommender systems survey" 46 : 109-132, 2013

      16 F. O. Isinkaye, "Recommendation systems : Principles, methods and evaluation" 16 (16): 261-273, 2015

      17 R. Katarya, "Recent developments in affective recommender systems" 461 : 182-190, 2016

      18 F. Gedikli, "Rating items by rating tags" 25-32, 2010

      19 M. Á. García-Cumbreras, "Pessimists and optimists : Improving collaborative filtering through sentiment analysis" 40 (40): 6758-6765, 2013

      20 J. Sun, "Mining affective text to improve social media item recommendation" 51 (51): 444-457, 2015

      21 Y. Koren, "Matrix factorization techniques for recommender systems" 42 (42): 2009

      22 D. Vallet, "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)" 420-431, 2010

      23 J. Buder, "Learning with personalized recommender systems : A psychological view" 28 (28): 207-216, 2012

      24 B. Sarwar, "Item-based collaborative filtering recommendation algorithms" 285-295, 2001

      25 H. Lim, "Item recommendation using tag emotion in social cataloging services" 89 : 179-187, 2017

      26 A. Nanopoulos, "Item recommendation in collaborative tagging systems" 41 (41): 760-771, 2011

      27 H. Xie, "Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy" 52 (52): 61-72, 2016

      28 Z. Qingbiao, "Incorporating sentiment analysis for improved tag-based recommendation" 1222-1227, 2011

      29 H. Kim, "Improving recommendation based on implicit trust relationships from tags" 25-30, 2012

      30 F. Gedikli, "Improving recommendation accuracy based on item-specific tag preferences" 4 (4): 11-, 2013

      31 Z.-K. Zhang, "Hybrid recommendation algorithm based on two roles of social tags" 22 (22): 1250166-, 2012

      32 V. Batagelj, "Generalized cores"

      33 S. Xu, "Exploring folksonomy for personalized search" 155-162, 2008

      34 G. Gonzalez, "Embedding emotional context in recommender systems" 845-852, 2007

      35 Z. Li, "Deep Collaborative Embedding for Social Image Understanding" 41 (41): 2019

      36 Y. Xu, "Cubic analysis of social bookmarking for personalized recommendation" 733-738, 2006

      37 R. Dong, "Combining similarity and sentiment in opinion mining for product recommendation" 46 (46): 285-312, 2016

      38 H. -N. Kim, "Collaborative user modeling with user-generated tags for social recommender systems" 38 (38): 8488-8496, 2011

      39 J. Peng, "Collaborative filtering in social tagging systems based on joint item-tag recommendations" 809-818, 2010

      40 P. de Meo, "Analyzing user behavior across social sharing environments" 5 (5): 14-, 2013

      41 M. Tkalčič, "Affective recommender systems: the role of emotions in recommender systems" 9-13, 2011

      42 M. Zhao, "Adapting Document Ranking to Users’ Preferences Using Click-Through Data" 26-42, 2006

      43 P. Symeonidis, "A unified framework for providing recommendations in social tagging systems based on ternary semantic analysis" 22 (22): 179-192, 2010

      44 L. De Lathauwer, "A multilinear singular value decomposition" 21 (21): 1253-1278, 2000

      45 K. Sparck Jones, "A Probabilistic Model of Onformation Retrieval : development and comparative experiments : Part 1" 63 (63): 779-808, 2000

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      학술지등록 한글명 : KSII Transactions on Internet and Information Systems
      외국어명 : KSII Transactions on Internet and Information Systems
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2009-01-01 평가 SCOPUS 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.45 0.21 0.37
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.32 0.29 0.244 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼