RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Denoising magnetic resonance images using collaborative non-local means

      한글로보기

      https://www.riss.kr/link?id=A107741476

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>Noise artifacts in magnetic resonance (MR) images increase the complexity of image processing workflows and decrease the reliability of inferences drawn from the images. It is thus often desirab...

      <P><B>Abstract</B></P> <P>Noise artifacts in magnetic resonance (MR) images increase the complexity of image processing workflows and decrease the reliability of inferences drawn from the images. It is thus often desirable to remove such artifacts beforehand for more robust and effective quantitative analysis. It is important to preserve the integrity of relevant image information while removing noise in MR images. A variety of approaches have been developed for this purpose, and the non-local means (NLM) filter has been shown to be able to achieve state-of-the-art denoising performance. For effective denoising, NLM relies heavily on the existence of repeating structural patterns, which however might not always be present within a single image. This is especially true when one considers the fact that the human brain is complex and contains a lot of unique structures. In this paper we propose to leverage the repeating structures from <I>multiple</I> images to <I>collaboratively</I> denoise an image. The underlying assumption is that it is more likely to find repeating structures from multiple scans than from a single scan. Specifically, to denoise a target image, multiple images, which may be acquired from different subjects, are spatially aligned to the target image, and an NLM-like block matching is performed on these aligned images with the target image as the reference. This will significantly increase the number of matching structures and thus boost the denoising performance. Experiments on both synthetic and real data show that the proposed approach, collaborative non-local means (CNLM), outperforms the classic NLM and yields results with markedly improved structural details.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼