RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      천연 및 합성 고분자 재료의 재생의학적 응용에 관한 특성연구

      한글로보기

      https://www.riss.kr/link?id=T12786505

      • 저자
      • 발행사항

        전주: 전북대학교 대학원, 2012

      • 학위논문사항

        학위논문(박사) -- 전북대학교 대학원 , 고분자.나노공학과 , 2012. 2

      • 발행연도

        2012

      • 작성언어

        한국어

      • 발행국(도시)

        전북특별자치도

      • 기타서명

        Study on the characteristics of natural and synthetic polymers for regenerative medicine

      • 형태사항

        xiii, 145 p.: 삽화; 27 cm.

      • 일반주기명

        전북대학교 논문은 저작권에 의해 보호받습니다.
        지도교수:강길선
        참고문헌 : p.131-144

      • 소장기관
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 전북대학교 중앙도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Regenerative medicine holds great promise as away to repair or replace portions of whole tissues from defective or damaged organs. Engineered tissue or regenerative medicine consists of three components: (1) various cells such as stem or precursor cells or harvested from donor tissue, (2) artificial structure called scaffold, and (3) biochemical and physiochemical factors to improve cell adhesion, proliferation, migration and differentiation. Of these, the biomaterials that serve as scaffold substrates plays central role. To achieve the goal of tissue reconstruction, scaffold or surface of biomaterials have some specific requirements; high porosity, injectability, synthetic manufacture, biocompatibility, non-immunogenicity, nano size and resorption rates. Because most mammalian cell types are anchorage dependent, the biomaterials have to provide a suitable surface for cell attachment, proliferation, differentiation and migration. Therefore, cell-biomaterial interaction is one of the most important factors in implantable scaffold for regenerative medicine. Thus, the objective of this study was to investigate the correlation behavior of cells and various biomaterials in terms of shape or chemical structure or origins of materials.
      First, we used collagen microspheres to assess the ability of human adipose stem cells(hASCs) to proliferate and differentiate into adipocytes on microspheres for repair of depressed or damaged soft tissue. hASCs were seeded onto microspheres and differentiated with adipogenic differentiation condition. The growth of cell, differentiation and function were evaluated by EtBr/Acridine Orange, Oil Red O, Nile Red staining. Through results of this study, hASCs attached and proliferated well on the collagen microspheres and differentiated into adipocyte.
      Second, the purified alginate microcapsule and PLGA scaffold modified with hyaluronic acid were evaluated whether modified scaffold are suitable scaffold for tissue engineering or modification method is appropriate. The microcapsuls and disc like HA/PLGA scaffolds were fabricated by tissue engineered method. The porosity and morphology of these scaffolds was examined by SEM and fluorescence microscope. Moreover, MTT assay carried out for the cell viability and proliferation in capsules and scaffolds. Schwann cell and Annulus fibrosus cells attached better to modified scaffold than unpurified or non-modified scaffolds. The alginate microcapsules and HA penentrated PLGA scaffold can be very useful for application in the tissue engineering.
      Furthermore, we investigated how human bone marrow stem cells(hMSCs) respond to surface property of scaffolds. We prepared wettable polymer surface by exposing PE sheet to radio frequency plasma discharge, which gradually oxidizes the PE surface. As the surface wettability increased, that is moderate hydrophobic position. The modified PE surfaces were characterized by measuring the water contact angle and viability of hMSCs on PE surface by MTT assay. Moreover, Cells on modified surface were observed by SEM. We found that hMSCs adhered better to highly hydrophilic and rough surfaces than to hydrophobic and smooth surfaces.
      Based on these results, the characteristics of biomaterials such as chemical structure, synthetic or natural polymer are the most important factors in cell-biomaterials interaction for regenerative medicine.
      번역하기

      Regenerative medicine holds great promise as away to repair or replace portions of whole tissues from defective or damaged organs. Engineered tissue or regenerative medicine consists of three components: (1) various cells such as stem or precursor cel...

      Regenerative medicine holds great promise as away to repair or replace portions of whole tissues from defective or damaged organs. Engineered tissue or regenerative medicine consists of three components: (1) various cells such as stem or precursor cells or harvested from donor tissue, (2) artificial structure called scaffold, and (3) biochemical and physiochemical factors to improve cell adhesion, proliferation, migration and differentiation. Of these, the biomaterials that serve as scaffold substrates plays central role. To achieve the goal of tissue reconstruction, scaffold or surface of biomaterials have some specific requirements; high porosity, injectability, synthetic manufacture, biocompatibility, non-immunogenicity, nano size and resorption rates. Because most mammalian cell types are anchorage dependent, the biomaterials have to provide a suitable surface for cell attachment, proliferation, differentiation and migration. Therefore, cell-biomaterial interaction is one of the most important factors in implantable scaffold for regenerative medicine. Thus, the objective of this study was to investigate the correlation behavior of cells and various biomaterials in terms of shape or chemical structure or origins of materials.
      First, we used collagen microspheres to assess the ability of human adipose stem cells(hASCs) to proliferate and differentiate into adipocytes on microspheres for repair of depressed or damaged soft tissue. hASCs were seeded onto microspheres and differentiated with adipogenic differentiation condition. The growth of cell, differentiation and function were evaluated by EtBr/Acridine Orange, Oil Red O, Nile Red staining. Through results of this study, hASCs attached and proliferated well on the collagen microspheres and differentiated into adipocyte.
      Second, the purified alginate microcapsule and PLGA scaffold modified with hyaluronic acid were evaluated whether modified scaffold are suitable scaffold for tissue engineering or modification method is appropriate. The microcapsuls and disc like HA/PLGA scaffolds were fabricated by tissue engineered method. The porosity and morphology of these scaffolds was examined by SEM and fluorescence microscope. Moreover, MTT assay carried out for the cell viability and proliferation in capsules and scaffolds. Schwann cell and Annulus fibrosus cells attached better to modified scaffold than unpurified or non-modified scaffolds. The alginate microcapsules and HA penentrated PLGA scaffold can be very useful for application in the tissue engineering.
      Furthermore, we investigated how human bone marrow stem cells(hMSCs) respond to surface property of scaffolds. We prepared wettable polymer surface by exposing PE sheet to radio frequency plasma discharge, which gradually oxidizes the PE surface. As the surface wettability increased, that is moderate hydrophobic position. The modified PE surfaces were characterized by measuring the water contact angle and viability of hMSCs on PE surface by MTT assay. Moreover, Cells on modified surface were observed by SEM. We found that hMSCs adhered better to highly hydrophilic and rough surfaces than to hydrophobic and smooth surfaces.
      Based on these results, the characteristics of biomaterials such as chemical structure, synthetic or natural polymer are the most important factors in cell-biomaterials interaction for regenerative medicine.

      더보기

      목차 (Table of Contents)

      • 제 1 장 서 론 1
      • 1.1 조직공학 1
      • 1.1.1 조직공학의 개념 1
      • 1.2 세포 3
      • 1.3 생체재료 6
      • 제 1 장 서 론 1
      • 1.1 조직공학 1
      • 1.1.1 조직공학의 개념 1
      • 1.2 세포 3
      • 1.3 생체재료 6
      • 1.3.1 고분자 재료 8
      • 1.3.1.1 합성 고분자 재료 9
      • 1.3.1.1.1 비분해성 합성 고분자 10
      • 1.3.1.1.2 생분해성 합성 고분자 12
      • 1.3.1.2. 천연고분자 재료 15
      • 1.3.1.2.1 단백질 유래 생체고분자 16
      • 1.3.1.2.2 다당류 유래 생체고분자 22
      • 1.3.1.2.3 생물학적 기질 26
      • 1.3.1.2.4 세포외 기질의 중요성 30
      • 1.3.2 세라믹 재료 32
      • 1.3.2.1. 알루미나 세라믹 32
      • 1.3.2.2 유리 및 결정화 유리 33
      • 1.3.2.3 인산칼슘계 세라믹 33
      • 1.3.3 지지체의 중요성 34
      • 1.4 세포조절물질 35
      • 1.4.1 성장인자 35
      • 1.4.1.1 섬유아세포 성장인자 36
      • 1.4.1.2 형질전환 성장인자 37
      • 1.4.1.3 혈관내피세포 성장인자 38
      • 1.4.2 사이토카인 39
      • 1.4.2.1 인터페론 39
      • 1.4.2.2 종양괴사인자 40
      • 1.4.3 호르몬 41
      • 1.4.3.1 뇌하수체 호르몬 41
      • 1.4.3.2 갑상선 호르몬 42
      • 1.4.3.3 부신호르몬 43
      • 1.5 요약 44
      • 제 2 장 골수유래줄기세포에서 DNA/PEI 나노복합체를 이용한 유전자 전달 59
      • 2.1 이론적 배경 59
      • 2.2 재료 및 방법 60
      • 2.2.1. 시약 및 재료 60
      • 2.2.2. Plasmid DNA의 준비 61
      • 2.2.3. DNA/PEI 나노입자의 구성 61
      • 2.2.4. 아가로스 젤 retardation 분석 61
      • 2.2.5. 입자크기의 분석 62
      • 2.2.6. 쥐 골수유래 줄기세포의 분리 62
      • 2.2.7. MTT assay 62
      • 2.2.8. 유전자 전달 효율 63
      • 2.2.9. 유세포 분석 63
      • 2.2.10 통계학적 분석 64
      • 2.3 결과 및 고찰 64
      • 2.3.1 DNA와 PEI의 나노복합체 형성 64
      • 2.3.2 독성 평가 65
      • 2.3.3 유전자 전달 효율 평가 65
      • 2.4 결론 66
      • 제 3 장 콜라겐 마이크로스피어를 이용한 지방줄기세포의 3차원 배양과 분화 74
      • 3.1 이론적 배경 74
      • 3.2 재료 및 방법 76
      • 3.2.1. 지방 줄기세포의 분리 및 배양 76
      • 3.2.2. 마이크로스피어 및 스피너플라스크의 준비 76
      • 3.2.3. 세포 증식 및 분화 77
      • 3.2.4 세포 수 측정 및 배양세포 관찰 78
      • 3.2.5 분화율 측정 78
      • 3.2.5.1 Nile Red 염색 78
      • 3.2.5.2 Oil Red O 염색 78
      • 3.3 결과 및 고찰 79
      • 3.3.1 Cultipher-G에서 지방줄기세포의 부착 및 증식 79
      • 3.3.2 Cultipher-G에서 지방줄기세포의 분화 80
      • 3.4 결론 81
      • 제 4 장 정제된 알지네이트 마이크로캡슐을 이용한 조직공학적 섬유륜세포의 재생효과 87
      • 4.1 이론적 배경 87
      • 4.2 재료 및 방법 89
      • 4.2.1 시약 및 재료 89
      • 4.2.2 알지네이트의 정제 90
      • 4.2.3 섬유륜세포의 분리 및 배양 91
      • 4.2.4 마이크로캡슐화 방법 91
      • 4.2.5 세포 표지 및 현미경 관찰 92
      • 4.2.6 MTT assay 92
      • 4.2.7 조직학적 평가 93
      • 4.2.8 통계학적 분석 93
      • 4.3 결과 및 고찰 93
      • 4.3.1. 마이크로캡슐에서의 섬유륜 세포의 배양 93
      • 4.3.2. 세포 표지 및 형광 이미지 94
      • 4.3.3. MTT 분석 94
      • 4.3.4 조직학적 평가 95
      • 4.4 결론 96
      • 제 5 장 히알루론산을 함침한 PLGA 지지체에서의 신경재생 101
      • 5.1 이론적 배경 101
      • 5.2 재료 및 방법 103
      • 5.2.1. 시약 및 재료 103
      • 5.2.2. PLGA 지지체의 제조 104
      • 5.2.3 HA/PLGA 지지체의 제조 및 특성 분석 104
      • 5.2.4 슈반세포의 배양 104
      • 5.2.5 MTT 분석 105
      • 5.2.6 SEM에 의한 다공도 분석 106
      • 5.2.7. RT-PCR 106
      • 5.2.8. 물 흡수성 평가 107
      • 5.2.9 통계학적 분석 107
      • 5.3 결과 및 고찰 108
      • 5.3.1. 세포의 생존율과 증식율 108
      • 5.3.2. PLGA와 HA/PLGA 지지체의 SEM 관찰 108
      • 5.3.3 RT-PCR 109
      • 5.3.4 물 흡수성 평가 109
      • 5.4 결론 110
      • 제 6 장 코로나 처리에 의한 구배 표면에서 hBMSCs의 부착 거동 117
      • 6.1 이론적 배경 117
      • 6.2 재료 및 방법 118
      • 6.2.1. PE 필름 시료의 준비 118
      • 6.2.2. 구배 표면의 준비 118
      • 6.2.3. PE 표면의 특성 분석 119
      • 6.2.4. hBMSC 세포의 배양 119
      • 6.2.5. 젖음성을 달리한 PE 표면에서 hBMSC의 생존율 120
      • 6.3 결과 및 고찰 121
      • 6.3.1. 젖음성을 달리한 PE 표면의 제조 121
      • 6.3.2. 세포의 증식율 분석 122
      • 6.3.3. PE 구배표면에서의 hBMSCs의 모폴로지 확인 122
      • 6.4 결론 124
      • 제 7 장 결 론 128
      • 참고문헌 131
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼