RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Torus Doublings in Symmetrically Coupled Period-doubling Systems

      한글로보기

      https://www.riss.kr/link?id=A104323108

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      As a representative model for Poincare maps of coupled period-doubling oscillators, we consider two symmetrically coupled Henon maps. Each invertible Henon map has a constant Jacobian b (0 < b < 1) controlling the "degree" of dissipation. For the singular case of infinite dissipation (b = 0), it reduces to the non-invertible logistic map. Instead of period-doubling bifurcations, antiphase periodic orbits (with a time shift of half a period) lose their stability via Hopf bifurcations,and then smooth tori, encircling the anti-phase mother orbits, appear. We study the fate of these tori by varying b. For large b, doubled tori are found to appear via torus doubling bifurcations.
      This is in contrast to the case of coupled logistic maps without torus doublings. With decreasing b,mechanisms for disappearance of torus doublings are investigated, and doubled tori are found to be replaced with simple tori, periodic attractors, or chaotic attractors for small b. These torus doublings are also observed in two symmetrically coupled pendula that individually display a period-doubling transition to chaos.
      번역하기

      As a representative model for Poincare maps of coupled period-doubling oscillators, we consider two symmetrically coupled Henon maps. Each invertible Henon map has a constant Jacobian b (0 < b < 1) controlling the "degree" of dissipation. For th...

      As a representative model for Poincare maps of coupled period-doubling oscillators, we consider two symmetrically coupled Henon maps. Each invertible Henon map has a constant Jacobian b (0 < b < 1) controlling the "degree" of dissipation. For the singular case of infinite dissipation (b = 0), it reduces to the non-invertible logistic map. Instead of period-doubling bifurcations, antiphase periodic orbits (with a time shift of half a period) lose their stability via Hopf bifurcations,and then smooth tori, encircling the anti-phase mother orbits, appear. We study the fate of these tori by varying b. For large b, doubled tori are found to appear via torus doubling bifurcations.
      This is in contrast to the case of coupled logistic maps without torus doublings. With decreasing b,mechanisms for disappearance of torus doublings are investigated, and doubled tori are found to be replaced with simple tori, periodic attractors, or chaotic attractors for small b. These torus doublings are also observed in two symmetrically coupled pendula that individually display a period-doubling transition to chaos.

      더보기

      참고문헌 (Reference)

      1 S. J. Shenker, 5 : 405-, 1982

      2 R. Van Buskirk, 31 : 3332-, 1985

      3 S.-Y. Kim, 53 : 1579-, 1996

      4 S.-Y. Kim, 54 : 1237-, 1996

      5 K. Geist, 41 : 1-, 1990

      6 M. J. Feigen-baum, 5 : 370-, 1982

      7 D. Rand, 49 : 132-, 1982

      8 M. H. Jensen, 30 : 1960-, 1984

      9 K. Kaneko, 69 : 1806-, 1983

      10 K. Kaneko, 72 : 202-, 1984

      1 S. J. Shenker, 5 : 405-, 1982

      2 R. Van Buskirk, 31 : 3332-, 1985

      3 S.-Y. Kim, 53 : 1579-, 1996

      4 S.-Y. Kim, 54 : 1237-, 1996

      5 K. Geist, 41 : 1-, 1990

      6 M. J. Feigen-baum, 5 : 370-, 1982

      7 D. Rand, 49 : 132-, 1982

      8 M. H. Jensen, 30 : 1960-, 1984

      9 K. Kaneko, 69 : 1806-, 1983

      10 K. Kaneko, 72 : 202-, 1984

      11 M. J. Feigenbaum, 19 : 25-, 1978

      12 M. J. Feigenbaum, 21 : 669-, 1979

      13 A. Arnéodo, 94 : 1-, 1983

      14 V. Franceschini, 6 : 285-, 1983

      15 J.-I. Kim, 55 : 3948-, 1997

      16 J.-M. Flesselles, 72 : 2871-, 1994

      17 K. E. McKell, 12 : 513-, 1990

      18 M. R. Bassett, 35 : 289-, 1989

      19 J. C. Shin, 82 : 1851-, 1999

      20 J. C. Shin, 60 : 5394-, 1999

      21 M. Diestelhorst, 366 : 437-, 2008

      22 M. Hénon, 27 : 291-, 1969

      23 M. Hénon, 50 : 69-, 1976

      24 S. Kuznetsov, 28 : 681-, 1985

      25 E. N. Erastova, 36 : 130-, 1991

      26 H. Kook, 43 : 2700-, 1991

      27 C. Reick, 52 : 1418-, 1995

      28 A. J. Lichtenberg, "Regular and Stochastic Motion" Springer-Verlag 283-, 1983

      29 V. S. Anishchenko, "Dynamical Chaos in Physical Sys-tems" Teubner 1989

      30 S. Lefschetz, "Differential Equations: Geometric Theory, Sec. 3.5." Dover Publications 1977

      31 M. Sano, "Chaos in Statistical Methods" Springer-Verlag 226-, 1984

      32 E. Ott, "Chaos in Dynamical Systems" Cambridge Uni-versity Press 212-, 2002

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 SCI 등재 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.47 0.15 0.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.2 0.26 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼