RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      다시점 영상 집합을 활용한 선체 블록 분류를 위한 CNN 모델 성능 비교 연구

      한글로보기

      https://www.riss.kr/link?id=A106864796

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      It is important to identify the location of ship hull blocks with exact block identification number when scheduling the shipbuilding process. The wrong information on the location and identification number of some hull block can cause low productivity by spending time to find where the exact hull block is. In order to solve this problem, it is necessary to equip the system to track the location of the blocks and to identify the identification numbers of the blocks automatically. There were a lot of researches of location tracking system for the hull blocks on the stockyard. However there has been no research to identify the hull blocks on the stockyard. This study compares the performance of 5 Convolutional Neural Network (CNN) models with multi-view image set on the classification of the hull blocks to identify the blocks on the stockyard. The CNN models are open algorithms of ImageNet Large-Scale Visual Recognition Competition (ILSVRC). Four scaled hull block models are used to acquire the images of ship hull blocks. Learning and transfer learning of the CNN models with original training data and augmented data of the original training data were done. 20 tests and predictions in consideration of five CNN models and four cases of training conditions are performed. In order to compare the classification performance of the CNN models, accuracy and average F1-Score from confusion matrix are adopted as the performance measures. As a result of the comparison, Resnet-152v2 model shows the highest accuracy and average F1-Score with full block prediction image set and with cropped block prediction image set.
      번역하기

      It is important to identify the location of ship hull blocks with exact block identification number when scheduling the shipbuilding process. The wrong information on the location and identification number of some hull block can cause low productivity...

      It is important to identify the location of ship hull blocks with exact block identification number when scheduling the shipbuilding process. The wrong information on the location and identification number of some hull block can cause low productivity by spending time to find where the exact hull block is. In order to solve this problem, it is necessary to equip the system to track the location of the blocks and to identify the identification numbers of the blocks automatically. There were a lot of researches of location tracking system for the hull blocks on the stockyard. However there has been no research to identify the hull blocks on the stockyard. This study compares the performance of 5 Convolutional Neural Network (CNN) models with multi-view image set on the classification of the hull blocks to identify the blocks on the stockyard. The CNN models are open algorithms of ImageNet Large-Scale Visual Recognition Competition (ILSVRC). Four scaled hull block models are used to acquire the images of ship hull blocks. Learning and transfer learning of the CNN models with original training data and augmented data of the original training data were done. 20 tests and predictions in consideration of five CNN models and four cases of training conditions are performed. In order to compare the classification performance of the CNN models, accuracy and average F1-Score from confusion matrix are adopted as the performance measures. As a result of the comparison, Resnet-152v2 model shows the highest accuracy and average F1-Score with full block prediction image set and with cropped block prediction image set.

      더보기

      참고문헌 (Reference)

      1 김병철, "합성곱 신경망을 이용한 3차원 스캐닝 점군 데이터의 플랜트 기자재 형상 인식" 대한기계학회 42 (42): 863-869, 2018

      2 박성욱, "전이학습에 방법에 따른 컨벌루션 신경망의영상 분류 성능 비교" 한국멀티미디어학회 21 (21): 1387-1395, 2018

      3 변영현, "자동차 주행환경에서 보행자 분류를 위한 딥러닝 모델의 전이학습 및 성능비교" 한국정보기술학회 16 (16): 83-92, 2018

      4 남병욱, "의사결정트리 학습을 적용한 조선소 블록 적치 위치 선정에 관한 연구" 대한조선학회 54 (54): 421-429, 2017

      5 Zeiler, M. D., "Visualizing and understanding convolutional networks" 818-833, 2014

      6 Simonyan, K., "Very deep convolutional networks for large-scale image recognition" 2014

      7 Lee, Y. H., "Study on the positioning system for logistics of ship-block" 68-75, 2008

      8 Szegedy, C., "Rethinking the inception architecture for computer vision" 2818-2826, 2016

      9 Mun, S. H., "Real time block locating system for shipbuilding through GNSS and IMU fusion" Pusan National University 2019

      10 이장현, "PDA 및 GPS를 이용한 옥외 작업장 블록 위치 추적 시스템 개발" 대한조선학회 43 (43): 803-811, 2006

      1 김병철, "합성곱 신경망을 이용한 3차원 스캐닝 점군 데이터의 플랜트 기자재 형상 인식" 대한기계학회 42 (42): 863-869, 2018

      2 박성욱, "전이학습에 방법에 따른 컨벌루션 신경망의영상 분류 성능 비교" 한국멀티미디어학회 21 (21): 1387-1395, 2018

      3 변영현, "자동차 주행환경에서 보행자 분류를 위한 딥러닝 모델의 전이학습 및 성능비교" 한국정보기술학회 16 (16): 83-92, 2018

      4 남병욱, "의사결정트리 학습을 적용한 조선소 블록 적치 위치 선정에 관한 연구" 대한조선학회 54 (54): 421-429, 2017

      5 Zeiler, M. D., "Visualizing and understanding convolutional networks" 818-833, 2014

      6 Simonyan, K., "Very deep convolutional networks for large-scale image recognition" 2014

      7 Lee, Y. H., "Study on the positioning system for logistics of ship-block" 68-75, 2008

      8 Szegedy, C., "Rethinking the inception architecture for computer vision" 2818-2826, 2016

      9 Mun, S. H., "Real time block locating system for shipbuilding through GNSS and IMU fusion" Pusan National University 2019

      10 이장현, "PDA 및 GPS를 이용한 옥외 작업장 블록 위치 추적 시스템 개발" 대한조선학회 43 (43): 803-811, 2006

      11 Zhou, B., "Object detectors emerge in deep scene cnns" 2014

      12 Zoph, B., "Learning transferable architectures for scalable image recognition" 8697-8710, 2018

      13 Zhou, B., "Learning deep features for discriminative localization" 2921-2929, 2016

      14 Krizhevsky, A., "Imagenet classification with deep convolutional neural networks" 1097-1105, 2012

      15 Standford University, "ILSVRC"

      16 Yosinski, J., "How transferable are features in deep neural networks?" 3320-3328, 2014

      17 LeCun, Y., "Gradient-based learning applied to document recognition" 86 (86): 2278-2324, 1998

      18 Szegedy, C., "Going deeper with convolutions" 1-9, 2014

      19 Srivastava, N., "Dropout : a simple way to prevent neural networks from overfitting" 15 (15): 1929-1958, 2014

      20 Kim, J.O., "Development of real time location measuring and logistics system for assembled block in shipbuilding" 834-839, 2009

      21 Kim, M. S., "Determination of arrangement and take-out path in ship block stockyard considering available space and obstructive block" 433-438, 2013

      22 Huang, G., "Densely connected convolutional networks" 4700-4708, 2017

      23 He, K., "Deep residual learning for image recognition" 770-778, 2016

      24 Francois, C., "Deep learning with Python" Gilbut Publichin Co,. Ltd 2018

      25 Saito, G., "Deep learning from scratch" Hanbit Media, lnc 2017

      26 Donahue, J., "Decaf: A deep convolutional activation feature for generic visual recognition" 647-655, 2014

      27 Cho, D. Y., "Block and logistics simulation" 48 (48): 24-29, 2011

      28 Pan, S. J., "A survey on transfer learning" 22 (22): 1345-1359, 2009

      29 Kang, J. H., "A study on mobile block logistics system for shipyard" Mokpo National Unive 2014

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-11 학술지명변경 외국어명 : 미등록 -> Journal of the Society of Naval Architects of Korea KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.51 0.51 0.52
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.44 0.4 0.702 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼