강화학습은 환경과 상호작용하는 과정을 통하여 목표를 이루기 위한 전략을 학습하는 방법으로써 에이전트의 학습방법으로 많이 사용한다. 독립적인 에이전트가 아닌 상호 의사소통이 가...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A82325147
2006
Korean
다중 에이전트 ; 강화학습 ; Q-Learning ; 편집거리
004
학술저널
393-396(4쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
강화학습은 환경과 상호작용하는 과정을 통하여 목표를 이루기 위한 전략을 학습하는 방법으로써 에이전트의 학습방법으로 많이 사용한다. 독립적인 에이전트가 아닌 상호 의사소통이 가...
강화학습은 환경과 상호작용하는 과정을 통하여 목표를 이루기 위한 전략을 학습하는 방법으로써 에이전트의 학습방법으로 많이 사용한다. 독립적인 에이전트가 아닌 상호 의사소통이 가능한 다중 에이전트 환경에서 에이전트의 학습정보를 서로 검색 및 공유가 가능하다면 환경이 거대하더라도 기존의 강화학습보다 빠르게 학습이 이루어질 것이다. 하지만 아직 다중 에이전트 환경에서 학습 방법에 대한 연구가 미흡하여 학습정보의 검색과 공유에 대해 다양한 방법들이 요구되고 있다. 본 논문에서는 대상 에이전트 학습 정보와 주변 에이전트들의 학습 정보 사이에 편집거리를 비교하여 유사한 에이전트를 찾고 그 에이전트 정보를 강화학습 사전정보로 사용함으로써 학습속도를 향상시킨 ED+Q-Learning 시스템을 제안한다.
목차 (Table of Contents)
온톨로지와 게임 커뮤니티의 질의/응답 게시글을 이용한 대화형 NPC의 구현
개인화 추천 시스템에서 속성 정보를 이용한 연관 사용자 군집 방법