RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      (The) Role of Physiological Ecology and Genomics in Amphibian Conservation

      한글로보기

      https://www.riss.kr/link?id=T16939562

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      The world's biodiversity is currently at a critical juncture, facing significant threats from climate change, habitat loss, and environmental pollution. Among the most affected are amphibians, key contributors to global biodiversity, now teetering on the brink of extinction. These creatures play a crucial role in wetland ecosystems, contributing to nutrient cycling and forming integral parts of food chains. The decline in amphibian populations highlights the severity of the biodiversity crisis and has garnered the attention of conservation biologists worldwide.
      To effectively protect amphibians, a comprehensive understanding of their population sustainability is essential. This requires the development of management strategies based on ecological knowledge. A multidisciplinary approach, combining conservation physiology and genetics, is particularly valuable. Physiological studies, including nutrition, growth, metabolism, endocrinology, and disease research, provide insights into the challenges faced by amphibians and how they adapt to environmental changes. Genetic studies complement this by analyzing gene pools and gene flow, contributing to our understanding of population stability. Considering the unique life cycle of amphibians, particularly their distinct experience of metamorphosis among vertebrates, adds complexity to conservation efforts. Therefore, a thorough understanding of amphibians' diverse life stages is crucial for their conservation.
      This study aims to integrate conservation physiology and genetics to establish a robust conservation framework for amphibians. It incorporates physiological tools such as host microbiology, endocrinology, and immunology, alongside veterinary examinations like blood biochemistry and radiology, areas not typically explored by amphibian specialists. Additionally, genetic analyses using microsatellite markers enhance our predictions of population viability. By intertwining these fields with behavioral ecology, developmental biology, wetland ecology, environmental engineering, and phenology, the study seeks to predict amphibian survival across various habitats and uncover their physiological adaptive mechanisms.
      This thesis is structured into six chapters, with the first five chapters comprising fully published papers. Each chapter contributes to a comprehensive understanding of amphibian conservation, focusing on physiological, morphological, and genetic aspects.
      Chapters 1 and 2 provide an extensive overview of physiological, morphological, and genetic benchmarks for field amphibians. Chapter 1 is dedicated to veterinary clinical examinations, which are crucial for accurately diagnosing conditions in amphibians. A key aspect of these examinations is the establishment of reference intervals (RIs) for precise interpretation and identification of abnormalities in individual animals. In this chapter, RIs for immunity, serum components, bone mineral density (BMD), and body composition were established for 151 male Pelophylax nigromaculatus. These analyses are not only replicable but also crucial for safely and accurately diagnosing the physiological condition of amphibians. The integration of these physiological analysis is instrumental in developing successful conservation strategies by identifying issues in various amphibian species.
      Chapter 2 shifts the focus to the scope of frog populations, specifically analyzing the genetic and morphological structure and diversity of black-spotted pond frog populations within the Geum River watershed in South Korea. This study found no significant differences in the genetic structure of frog populations across 14 sub-watershed areas, indicating that these frogs represent a single genetic population. However, variations were observed in skull morphology between some sub-watershed areas. Interestingly, these morphological distance correlated with geographic distance rather than genetic distance. This finding is significant for habitat scoping and provides valuable insights for population management, conservation, and research.
      Chapters 3 and 4 of the thesis focus on evaluating the sustainability of amphibian populations and exploring biological response to anthropogenic environmental factors. Especially, chapter three build upon the data and insights from Chapters 1 and 2, applying them to practical field scenarios.
      Chapter 3 centers on the population management of anurans, assessing habitat suitability in relation to river structures and artificial levees. The chapter conducts genetic and physiological analyses of frog populations in riverine wetlands, comparing those in riverside areas between water channels and river levees with those in protected lowlands between river levees and human settlements. The findings suggest that enhancing habitat connectivity is crucial. Frogs in riverside areas may not be at a disadvantage in terms of population genetic diversity or physiological conditions, but they could be genetically isolated due to the presence of levees. This chapter underscores the importance of genetic and physiological data in understanding complex habitats and managing amphibian populations within ecosystems.
      Chapter 4 aims to identify the physiological and behavioral impacts on anuran populations resulting from eco-friendly strategies for wind energy production. Specifically, it examines the interconnected behavioral, physiological, and immunological responses of Japanese tree frogs (Dryophytes japonicus) to wind turbine noise during their breeding season. The results indicate that turbine noise may lead to decreased immunity in these frogs as a result of an energy trade-off for increased calling rates, rather than acting solely as a physiological stressor causing a direct increase in corticosterone levels. This reduced immunity, stemming from the physiological response to noise, has the potential to alter the disease epidemiology within the population and foster new adaptive patterns in these habitats. These findings demonstrate that physiological analysis is effective in identifying various stressors affecting amphibians and can be instrumental in elucidating complex biological mechanisms.
      Chapters 5 and 6 of the thesis delve into the physiological impacts associated with the complex life history of amphibians, focusing on their responses to both external and internal factors.
      Chapter 5 aims to comprehensively investigate how variations in growth rate and gut bacterial communities in amphibians are influenced by temperature differences during the complex process of metamorphosis. The study examines the role of both exogenous and endogenous factors in altering the gut microbiota of tadpoles. The findings suggest that intrinsic biological systems often have some significant influence on organism homeostasis and variation than external environmental pressures. While the impact of environmental factors can vary in magnitude and type, the process of metamorphosis in tadpoles is shown to have a profound effect on their biology, particularly in terms of microbial interactions. This research advances our understanding of host-microbiome interactions and highlights the complexity of amphibians' life history.
      Chapter 6 assesses the relationships among food resources, the gut bacterial community, and the host physiology of frogs, taking into account phenological variations and life histories. The results indicate that the gut microbiome may serve as a link between food source and the physiological status of frogs. Furthermore, phenology appears to strengthen the relationship between gut microbiota and physiological status in anurans. This study is significant as it contributes to our understanding of the interplay between the physiological state and gut microbiota in ectothermic animals. It also provides valuable insights for future research on microbial communities and their detailed response processes.
      번역하기

      The world's biodiversity is currently at a critical juncture, facing significant threats from climate change, habitat loss, and environmental pollution. Among the most affected are amphibians, key contributors to global biodiversity, now teetering on ...

      The world's biodiversity is currently at a critical juncture, facing significant threats from climate change, habitat loss, and environmental pollution. Among the most affected are amphibians, key contributors to global biodiversity, now teetering on the brink of extinction. These creatures play a crucial role in wetland ecosystems, contributing to nutrient cycling and forming integral parts of food chains. The decline in amphibian populations highlights the severity of the biodiversity crisis and has garnered the attention of conservation biologists worldwide.
      To effectively protect amphibians, a comprehensive understanding of their population sustainability is essential. This requires the development of management strategies based on ecological knowledge. A multidisciplinary approach, combining conservation physiology and genetics, is particularly valuable. Physiological studies, including nutrition, growth, metabolism, endocrinology, and disease research, provide insights into the challenges faced by amphibians and how they adapt to environmental changes. Genetic studies complement this by analyzing gene pools and gene flow, contributing to our understanding of population stability. Considering the unique life cycle of amphibians, particularly their distinct experience of metamorphosis among vertebrates, adds complexity to conservation efforts. Therefore, a thorough understanding of amphibians' diverse life stages is crucial for their conservation.
      This study aims to integrate conservation physiology and genetics to establish a robust conservation framework for amphibians. It incorporates physiological tools such as host microbiology, endocrinology, and immunology, alongside veterinary examinations like blood biochemistry and radiology, areas not typically explored by amphibian specialists. Additionally, genetic analyses using microsatellite markers enhance our predictions of population viability. By intertwining these fields with behavioral ecology, developmental biology, wetland ecology, environmental engineering, and phenology, the study seeks to predict amphibian survival across various habitats and uncover their physiological adaptive mechanisms.
      This thesis is structured into six chapters, with the first five chapters comprising fully published papers. Each chapter contributes to a comprehensive understanding of amphibian conservation, focusing on physiological, morphological, and genetic aspects.
      Chapters 1 and 2 provide an extensive overview of physiological, morphological, and genetic benchmarks for field amphibians. Chapter 1 is dedicated to veterinary clinical examinations, which are crucial for accurately diagnosing conditions in amphibians. A key aspect of these examinations is the establishment of reference intervals (RIs) for precise interpretation and identification of abnormalities in individual animals. In this chapter, RIs for immunity, serum components, bone mineral density (BMD), and body composition were established for 151 male Pelophylax nigromaculatus. These analyses are not only replicable but also crucial for safely and accurately diagnosing the physiological condition of amphibians. The integration of these physiological analysis is instrumental in developing successful conservation strategies by identifying issues in various amphibian species.
      Chapter 2 shifts the focus to the scope of frog populations, specifically analyzing the genetic and morphological structure and diversity of black-spotted pond frog populations within the Geum River watershed in South Korea. This study found no significant differences in the genetic structure of frog populations across 14 sub-watershed areas, indicating that these frogs represent a single genetic population. However, variations were observed in skull morphology between some sub-watershed areas. Interestingly, these morphological distance correlated with geographic distance rather than genetic distance. This finding is significant for habitat scoping and provides valuable insights for population management, conservation, and research.
      Chapters 3 and 4 of the thesis focus on evaluating the sustainability of amphibian populations and exploring biological response to anthropogenic environmental factors. Especially, chapter three build upon the data and insights from Chapters 1 and 2, applying them to practical field scenarios.
      Chapter 3 centers on the population management of anurans, assessing habitat suitability in relation to river structures and artificial levees. The chapter conducts genetic and physiological analyses of frog populations in riverine wetlands, comparing those in riverside areas between water channels and river levees with those in protected lowlands between river levees and human settlements. The findings suggest that enhancing habitat connectivity is crucial. Frogs in riverside areas may not be at a disadvantage in terms of population genetic diversity or physiological conditions, but they could be genetically isolated due to the presence of levees. This chapter underscores the importance of genetic and physiological data in understanding complex habitats and managing amphibian populations within ecosystems.
      Chapter 4 aims to identify the physiological and behavioral impacts on anuran populations resulting from eco-friendly strategies for wind energy production. Specifically, it examines the interconnected behavioral, physiological, and immunological responses of Japanese tree frogs (Dryophytes japonicus) to wind turbine noise during their breeding season. The results indicate that turbine noise may lead to decreased immunity in these frogs as a result of an energy trade-off for increased calling rates, rather than acting solely as a physiological stressor causing a direct increase in corticosterone levels. This reduced immunity, stemming from the physiological response to noise, has the potential to alter the disease epidemiology within the population and foster new adaptive patterns in these habitats. These findings demonstrate that physiological analysis is effective in identifying various stressors affecting amphibians and can be instrumental in elucidating complex biological mechanisms.
      Chapters 5 and 6 of the thesis delve into the physiological impacts associated with the complex life history of amphibians, focusing on their responses to both external and internal factors.
      Chapter 5 aims to comprehensively investigate how variations in growth rate and gut bacterial communities in amphibians are influenced by temperature differences during the complex process of metamorphosis. The study examines the role of both exogenous and endogenous factors in altering the gut microbiota of tadpoles. The findings suggest that intrinsic biological systems often have some significant influence on organism homeostasis and variation than external environmental pressures. While the impact of environmental factors can vary in magnitude and type, the process of metamorphosis in tadpoles is shown to have a profound effect on their biology, particularly in terms of microbial interactions. This research advances our understanding of host-microbiome interactions and highlights the complexity of amphibians' life history.
      Chapter 6 assesses the relationships among food resources, the gut bacterial community, and the host physiology of frogs, taking into account phenological variations and life histories. The results indicate that the gut microbiome may serve as a link between food source and the physiological status of frogs. Furthermore, phenology appears to strengthen the relationship between gut microbiota and physiological status in anurans. This study is significant as it contributes to our understanding of the interplay between the physiological state and gut microbiota in ectothermic animals. It also provides valuable insights for future research on microbial communities and their detailed response processes.

      더보기

      국문 초록 (Abstract) kakao i 다국어 번역

      기후변화와 서식지 파괴, 환경 오염과 같은 생태계의 위협 요소들이 서로 복잡하게 상호작용하면서 전 세계의 생물다양성이 전례 없는 위기에 직면하고 있다. 특히 양서류는 전 세계적으로 심각한 멸종 위기에 처해있는 지구 생물다양성의 중요한 부분이다. 양서류는 습지 생태계에서 영양 염류의 효율적인 순환과 먹이 사슬의 연결과 같은 중요한 역할을 수행하는데, 이들의 감소는 생물다양성 위기를 더욱 부각시킨다. 이를 고려하여 많은 보전생물학자들이 양서류의 감소에 주목하고 이를 효과적으로 보호하기 위한 방법을 연구하고 있다.
      양서류의 효과적인 보전을 위해서는 개체군의 지속 가능성을 평가하고 생태학적 현상에 대한 이해를 기반으로 관리 전략을 수립하는 것이 필수적이다. 이를 위해 보전생리학과 보전유전학의 목표를 통합하는 다학제적 접근 방식이 활용될 수 있다. 영양, 신진대사, 성장, 내분비, 질병 상태 등을 포함한 생리 분석은 양서류 개체군이 경험하는 위협 요인을 추적하는 데 유용하다. 이러한 분석을 통해 양서류가 변화하는 환경에서 경험할 수 있는 반응과 적응 과정을 식별할 수 있다. 또한, 유전학적 접근 방식은 유전자 풀의 구성과 유전자 흐름을 기반으로 한 개체군의 안정성을 평가하는 데 도움이 된다. 종합적으로, 두 분야의 목표를 융합함으로써 개체군의 건강과 안정성을 파악하여 지속 가능성을 증진시킬 수 있다. 양서류의 생활사가 변태를 경험하는 유일한 척추동물 중 하나로, 이러한 복잡성은 보전 전략과 관리 방안 수립을 어렵게 만든다. 따라서 개체군 상태의 평가뿐만 아니라 양서류의 복잡한 생활사를 고려하여 생태학적 현상을 이해하는 것도 양서류 보전에 기여할 수 있다.
      이 연구는 보전생리학과 보전유전학의 접근 방식을 통합하여 양서류의 효과적인 보전 방법을 제시하고 체계적인 보전 관리에 기여하는 것을 목표로 한다. 양서류학자들이 일반적으로 사용하지 않는 혈액 생화학 및 방사선학과 같은 수의 임상검사를 포함한 숙주의 미생물학, 내분비학, 면역학과 같은 생리학적 분석이 소개된다. 더불어 마이크로새틀라이트 마커를 사용한 유전학적 분석이 개체군의 지속 가능성 예측을 향상시키기 위해 결합된다. 결과적으로, 이러한 분야들은 행동학, 발생생물학, 습지 생태학, 환경공학, 현상학 등 여러 분야와 결합하여 다양한 환경에 놓인 양서류 개체군의 지속 다양성을 예측할 뿐만 아니라, 양서류가 경험할 수 있는 주요 생태학적 현상에 따른 생리학적 적응 메커니즘을 이해하는 데 사용된다.
      논문은 총 여섯 개의 장으로 구성되어 있으며 이 중 다섯 개의 장은 출판이 완료된 논문으로 구성되어 있다. 각 장에서는 개체군의 생리 상태와 유전적 양상에 초점을 맞추어 양서류 개체군을 평가하고 체계적인 보전을 위한 이해 증진의 공통 목표를 가진다.
      첫 번째 장과 두 번째 장에서는 현장의 양서류에 대한 생리·형태·유전학적 정보 구축에 대한 내용으로 구성된다. 첫 번째 장에서는 양서류의 상태를 정확하게 진단하기 위해 필수적인 수의 임상 검사 (veterinary clinical examination)에 대해 다룬다. 이러한 검사의 핵심적인 측면은 개체 단위의 특이 사항을 정확하게 진단하고 식별하기 위한 기준 범위 (reference interval)를 설정하는 것이다. 이 장에서는 151마리의 수컷 참개구리 (Phelophylax nigromaculatus)에 대한 선천 면역, 혈청 성분, 체성분 및 골밀도의 기준 범위를 설정하였다. 이러한 분석은 양서류의 생리 상태를 안전하고 정확하게 진단하기 위해서도 효과적으로 사용될 수 있다. 특히 여러 종류의 생리학적 분석을 통합하는 것은 다양한 양서류 종에서 나타날 수 있는 문제를 식별하게 도와주며, 이를 통한 효과적인 양서류 관리와 보전에 기여할 수 있다.
      두 번째 장에서는 무미양서류 개체군의 범위에 초점을 맞추어 국내의 금강 유역 내 참개구리 개체군의 유전적·형태적 다양성과 구조의 차이를 분석하고자 하였다. 본 연구에서는 14개 유역에 따라 참개구리 개체군의 유전적 구조의 차이가 나타나지 않았으며, 이는 이 지리적 범위 안의 참개구리 개체군들이 단일 유전적 집단으로 구성된다는 것을 보여준다. 그러나 두개골의 형태는 일부 개체군 사이에서 나눠지는 것을 확인할 수 있었다. 이러한 형태학적 거리는 유전적 거리보다는 지리적 거리와 상관성이 있었다. 이 결과는 개체군의 서식지 범위 지정에 유용하게 사용될 수 있으며 개체군 관리와 보전 및 연구에 중요한 통찰력을 제공한다.
      세 번째 장과 네 번째 장에서는 인위적인 환경 요인에 대한 양서류 개체군의 지속가능성을 평가하고 생물학적 반응 기작을 연구하는 데에 중점을 둔다. 특히 세 번째 장에서는 첫 번째 장과 두 번째 장에서 획득하였던 생리 및 유전 정보를 사용하여 현장 개체군의 상태 평가를 적용한다.
      세 번째 장은 하천의 구조와 인공 제방과 관련된 서식지 적합성을 평가하여 무미양서류 개체군의 관리 방안을 수립하는 데에 중점을 둔다. 이 연구에서는 수로와 하천 제방 사이의 제외지 개체군과 제내지 개체군에 대한 유전 및 생리학적 상태 비교를 수행한다. 연구 결과는 서식지의 연결성을 강화하는 것이 제방에 영향을 받을 수 있는 참개구리 개체군의 관리에 효과적일 수 있다는 것을 시사한다. 제외지의 참개구리 개체군은 유전적 다양성이나 생리 상태가 저하된 상태로 나타나지는 않지만, 제방의 존재를 통해 이들 개체군은 일시적인 유전적 고립을 경험할 수 있다. 이 장에서는 복잡한 서식지를 이해하고 생태계 내의 양서류 개체군들을 관리하는데 있어 유전학적·생리학적 정보의 중요성을 강조한다.
      네 번째 장은 풍력 에너지 생산을 위한 친환경 전략이 무미양서류 개체군에 미치는 생리적·행동적 영향을 확인하는 것을 목표로 한다. 구체적으로, 번식기 동안 풍력 터빈 소음에 영향을 받은 청개구리 (Dryophytes japonicus)의 행동, 생리, 면역학적인 연결 반응을 확인하고자 하였다. 연구 결과는 풍력 터빈 소음이 단일 생리학적 스트레스 요인으로 작용하기보다는 울음소리 속도 증가를 위한 에너지 교환의 결과로 청개구리의 면역 저하를 유발하는 것을 보여주었다. 소음에 대한 생리학적 반응으로 인해 감소된 면역력은 개체군의 질병 역학을 변화시키고 이러한 서식지에서 새로운 적응 양상을 조성할 가능성이 있다. 이러한 발견은 생리학적 분석이 양서류에 영향을 미치는 다양한 스트레스 요인을 식별하기 위해 효과적으로 사용될 수 있으며 복잡한 생물학적 기작을 밝히는 데에 도움이 될 수 있음을 보여준다.
      다섯 번째 장과 여섯 번째 장은 외인성 및 내인성 요인에 대한 양서류의 반응에 초점을 맞추어, 양서류의 복잡한 생활사와 관련된 생리학적 영향을 파악한다.
      다섯 번째 장은 양서류의 성장률과 장내 세균 군집의 변화가 복잡한 변태 과정에서 온도 차이에 의해 어떻게 영향을 받는지 포괄적으로 조사하는 것을 목표로 한다. 이 연구는 올챙이의 장내 미생물을 변화시키는 데 있어서 외인성 요인과 내인성 요인 모두의 역할을 조사한다. 연구 결과는 내재적 생물학적 시스템이 외부 환경 압력보다 종종 유기체의 항상성과 변이에 더 중요한 영향을 미치는 경우가 있다는 것을 보여준다. 환경 요인의 영향은 다양한 규모와 유형으로 변화될 수 있지만 올챙이의 변태 과정은 특히 미생물 상호 작용 측면에서 생물학적 시스템에 중대한 영향을 미치는 것으로 나타났다. 이 연구는 숙주와 미생물의 상호작용에 대한 이해를 증진시키고 양서류 생활사의 복잡성을 강조한다.
      여섯 번째 장에서는 생리학적 변이와 생활사를 고려하여 참개구리에서 식량 자원과 장내 세균 군집, 숙주 생리 상태 사이의 관계를 평가한다. 연구 결과는 장내 미생물 군집이 먹이원과 개구리의 생리학적 상태 사이의 연결고리 역할을 할 수 있음을 나타낸다. 더욱이, 현상학은 장내 미생물군과 무미양서류의 생리학적 상태 사이의 관계를 강화시키는 것으로 보인다. 이 연구는 변온동물의 생리학적 상태와 장내 미생물군 사이의 상호작용을 이해를 증진시킬 수 있다는 점에서 중요하다. 또한 미생물 군집과 상세한 반응 과정에 대한 향후 연구를 위해 귀중한 통찰력을 제공한다.
      번역하기

      기후변화와 서식지 파괴, 환경 오염과 같은 생태계의 위협 요소들이 서로 복잡하게 상호작용하면서 전 세계의 생물다양성이 전례 없는 위기에 직면하고 있다. 특히 양서류는 전 세계적으로 ...

      기후변화와 서식지 파괴, 환경 오염과 같은 생태계의 위협 요소들이 서로 복잡하게 상호작용하면서 전 세계의 생물다양성이 전례 없는 위기에 직면하고 있다. 특히 양서류는 전 세계적으로 심각한 멸종 위기에 처해있는 지구 생물다양성의 중요한 부분이다. 양서류는 습지 생태계에서 영양 염류의 효율적인 순환과 먹이 사슬의 연결과 같은 중요한 역할을 수행하는데, 이들의 감소는 생물다양성 위기를 더욱 부각시킨다. 이를 고려하여 많은 보전생물학자들이 양서류의 감소에 주목하고 이를 효과적으로 보호하기 위한 방법을 연구하고 있다.
      양서류의 효과적인 보전을 위해서는 개체군의 지속 가능성을 평가하고 생태학적 현상에 대한 이해를 기반으로 관리 전략을 수립하는 것이 필수적이다. 이를 위해 보전생리학과 보전유전학의 목표를 통합하는 다학제적 접근 방식이 활용될 수 있다. 영양, 신진대사, 성장, 내분비, 질병 상태 등을 포함한 생리 분석은 양서류 개체군이 경험하는 위협 요인을 추적하는 데 유용하다. 이러한 분석을 통해 양서류가 변화하는 환경에서 경험할 수 있는 반응과 적응 과정을 식별할 수 있다. 또한, 유전학적 접근 방식은 유전자 풀의 구성과 유전자 흐름을 기반으로 한 개체군의 안정성을 평가하는 데 도움이 된다. 종합적으로, 두 분야의 목표를 융합함으로써 개체군의 건강과 안정성을 파악하여 지속 가능성을 증진시킬 수 있다. 양서류의 생활사가 변태를 경험하는 유일한 척추동물 중 하나로, 이러한 복잡성은 보전 전략과 관리 방안 수립을 어렵게 만든다. 따라서 개체군 상태의 평가뿐만 아니라 양서류의 복잡한 생활사를 고려하여 생태학적 현상을 이해하는 것도 양서류 보전에 기여할 수 있다.
      이 연구는 보전생리학과 보전유전학의 접근 방식을 통합하여 양서류의 효과적인 보전 방법을 제시하고 체계적인 보전 관리에 기여하는 것을 목표로 한다. 양서류학자들이 일반적으로 사용하지 않는 혈액 생화학 및 방사선학과 같은 수의 임상검사를 포함한 숙주의 미생물학, 내분비학, 면역학과 같은 생리학적 분석이 소개된다. 더불어 마이크로새틀라이트 마커를 사용한 유전학적 분석이 개체군의 지속 가능성 예측을 향상시키기 위해 결합된다. 결과적으로, 이러한 분야들은 행동학, 발생생물학, 습지 생태학, 환경공학, 현상학 등 여러 분야와 결합하여 다양한 환경에 놓인 양서류 개체군의 지속 다양성을 예측할 뿐만 아니라, 양서류가 경험할 수 있는 주요 생태학적 현상에 따른 생리학적 적응 메커니즘을 이해하는 데 사용된다.
      논문은 총 여섯 개의 장으로 구성되어 있으며 이 중 다섯 개의 장은 출판이 완료된 논문으로 구성되어 있다. 각 장에서는 개체군의 생리 상태와 유전적 양상에 초점을 맞추어 양서류 개체군을 평가하고 체계적인 보전을 위한 이해 증진의 공통 목표를 가진다.
      첫 번째 장과 두 번째 장에서는 현장의 양서류에 대한 생리·형태·유전학적 정보 구축에 대한 내용으로 구성된다. 첫 번째 장에서는 양서류의 상태를 정확하게 진단하기 위해 필수적인 수의 임상 검사 (veterinary clinical examination)에 대해 다룬다. 이러한 검사의 핵심적인 측면은 개체 단위의 특이 사항을 정확하게 진단하고 식별하기 위한 기준 범위 (reference interval)를 설정하는 것이다. 이 장에서는 151마리의 수컷 참개구리 (Phelophylax nigromaculatus)에 대한 선천 면역, 혈청 성분, 체성분 및 골밀도의 기준 범위를 설정하였다. 이러한 분석은 양서류의 생리 상태를 안전하고 정확하게 진단하기 위해서도 효과적으로 사용될 수 있다. 특히 여러 종류의 생리학적 분석을 통합하는 것은 다양한 양서류 종에서 나타날 수 있는 문제를 식별하게 도와주며, 이를 통한 효과적인 양서류 관리와 보전에 기여할 수 있다.
      두 번째 장에서는 무미양서류 개체군의 범위에 초점을 맞추어 국내의 금강 유역 내 참개구리 개체군의 유전적·형태적 다양성과 구조의 차이를 분석하고자 하였다. 본 연구에서는 14개 유역에 따라 참개구리 개체군의 유전적 구조의 차이가 나타나지 않았으며, 이는 이 지리적 범위 안의 참개구리 개체군들이 단일 유전적 집단으로 구성된다는 것을 보여준다. 그러나 두개골의 형태는 일부 개체군 사이에서 나눠지는 것을 확인할 수 있었다. 이러한 형태학적 거리는 유전적 거리보다는 지리적 거리와 상관성이 있었다. 이 결과는 개체군의 서식지 범위 지정에 유용하게 사용될 수 있으며 개체군 관리와 보전 및 연구에 중요한 통찰력을 제공한다.
      세 번째 장과 네 번째 장에서는 인위적인 환경 요인에 대한 양서류 개체군의 지속가능성을 평가하고 생물학적 반응 기작을 연구하는 데에 중점을 둔다. 특히 세 번째 장에서는 첫 번째 장과 두 번째 장에서 획득하였던 생리 및 유전 정보를 사용하여 현장 개체군의 상태 평가를 적용한다.
      세 번째 장은 하천의 구조와 인공 제방과 관련된 서식지 적합성을 평가하여 무미양서류 개체군의 관리 방안을 수립하는 데에 중점을 둔다. 이 연구에서는 수로와 하천 제방 사이의 제외지 개체군과 제내지 개체군에 대한 유전 및 생리학적 상태 비교를 수행한다. 연구 결과는 서식지의 연결성을 강화하는 것이 제방에 영향을 받을 수 있는 참개구리 개체군의 관리에 효과적일 수 있다는 것을 시사한다. 제외지의 참개구리 개체군은 유전적 다양성이나 생리 상태가 저하된 상태로 나타나지는 않지만, 제방의 존재를 통해 이들 개체군은 일시적인 유전적 고립을 경험할 수 있다. 이 장에서는 복잡한 서식지를 이해하고 생태계 내의 양서류 개체군들을 관리하는데 있어 유전학적·생리학적 정보의 중요성을 강조한다.
      네 번째 장은 풍력 에너지 생산을 위한 친환경 전략이 무미양서류 개체군에 미치는 생리적·행동적 영향을 확인하는 것을 목표로 한다. 구체적으로, 번식기 동안 풍력 터빈 소음에 영향을 받은 청개구리 (Dryophytes japonicus)의 행동, 생리, 면역학적인 연결 반응을 확인하고자 하였다. 연구 결과는 풍력 터빈 소음이 단일 생리학적 스트레스 요인으로 작용하기보다는 울음소리 속도 증가를 위한 에너지 교환의 결과로 청개구리의 면역 저하를 유발하는 것을 보여주었다. 소음에 대한 생리학적 반응으로 인해 감소된 면역력은 개체군의 질병 역학을 변화시키고 이러한 서식지에서 새로운 적응 양상을 조성할 가능성이 있다. 이러한 발견은 생리학적 분석이 양서류에 영향을 미치는 다양한 스트레스 요인을 식별하기 위해 효과적으로 사용될 수 있으며 복잡한 생물학적 기작을 밝히는 데에 도움이 될 수 있음을 보여준다.
      다섯 번째 장과 여섯 번째 장은 외인성 및 내인성 요인에 대한 양서류의 반응에 초점을 맞추어, 양서류의 복잡한 생활사와 관련된 생리학적 영향을 파악한다.
      다섯 번째 장은 양서류의 성장률과 장내 세균 군집의 변화가 복잡한 변태 과정에서 온도 차이에 의해 어떻게 영향을 받는지 포괄적으로 조사하는 것을 목표로 한다. 이 연구는 올챙이의 장내 미생물을 변화시키는 데 있어서 외인성 요인과 내인성 요인 모두의 역할을 조사한다. 연구 결과는 내재적 생물학적 시스템이 외부 환경 압력보다 종종 유기체의 항상성과 변이에 더 중요한 영향을 미치는 경우가 있다는 것을 보여준다. 환경 요인의 영향은 다양한 규모와 유형으로 변화될 수 있지만 올챙이의 변태 과정은 특히 미생물 상호 작용 측면에서 생물학적 시스템에 중대한 영향을 미치는 것으로 나타났다. 이 연구는 숙주와 미생물의 상호작용에 대한 이해를 증진시키고 양서류 생활사의 복잡성을 강조한다.
      여섯 번째 장에서는 생리학적 변이와 생활사를 고려하여 참개구리에서 식량 자원과 장내 세균 군집, 숙주 생리 상태 사이의 관계를 평가한다. 연구 결과는 장내 미생물 군집이 먹이원과 개구리의 생리학적 상태 사이의 연결고리 역할을 할 수 있음을 나타낸다. 더욱이, 현상학은 장내 미생물군과 무미양서류의 생리학적 상태 사이의 관계를 강화시키는 것으로 보인다. 이 연구는 변온동물의 생리학적 상태와 장내 미생물군 사이의 상호작용을 이해를 증진시킬 수 있다는 점에서 중요하다. 또한 미생물 군집과 상세한 반응 과정에 대한 향후 연구를 위해 귀중한 통찰력을 제공한다.

      더보기

      목차 (Table of Contents)

      • I. Chapter 1. Reference Intervals in Combined Veterinary Clinical Examinations of Male Black-Spotted Pond Frogs (Pelophylax nigromaculatus) 1
      • 1.1. Introduction 1
      • 1.2. Materials and Methods 4
      • 1.3. Results 10
      • 1.4. Discussion 16
      • I. Chapter 1. Reference Intervals in Combined Veterinary Clinical Examinations of Male Black-Spotted Pond Frogs (Pelophylax nigromaculatus) 1
      • 1.1. Introduction 1
      • 1.2. Materials and Methods 4
      • 1.3. Results 10
      • 1.4. Discussion 16
      • II. Chapter 2. Genetic and Morphological Pattern of the Black-Spotted Pond Frog (Pelophylax nigromaculatus) in Watershed Areas of the Geum River in South Korea 22
      • 2.1. Introduction 22
      • 2.2. Materials and Methods 25
      • 2.3. Results 35
      • 2.4. Discussion 46
      • III. Chapter 3. Assessment of Habitat Suitability in Riverine Wetland Using Genetical and Physiological Analysis of Anurans (Pelophylax nigromaculatus) 49
      • 3.1. Introduction 49
      • 3.2. Materials and Methods 53
      • 3.3. Results 66
      • 3.4. Discussion 79
      • IV. Chapter 4. Wind Turbine Noise Behaviorally and Physiologically Changes Male Frogs 86
      • 4.1. Introduction 86
      • 4.2. Materials and Methods 90
      • 4.3. Results 104
      • 4.4. Discussion 115
      • V. Chapter 5. Tadpole Growth Rates and Gut Bacterial Community: Dominance of Developmental Stages Over Temperature Variations 121
      • 5.1. Introduction 121
      • 5.2. Materials and Methods 123
      • 5.3. Results 129
      • 5.4. Discussion 139
      • VI. Chapter 6. Phenology of Anuran Strengthen the Response and Relationship Between Their Physiology and Gut Bacterial Community 144
      • 6.1. Introduction 144
      • 6.2. Materials and Methods 148
      • 6.3. Results 155
      • 6.4. Discussion 167
      • VII. Overview conclusion 174
      • VIII. References 178
      더보기

      참고문헌 (Reference)

      1. Untangling the morphological contradiction: First ontogenetic description of the post-hatching skeleton of the direct-developing frog Brachycephalus garbeanus Miranda-Ribeiro, 1920 (Amphibia: Anura: Brachycephalidae) with comments on the genus miniaturization, Folly M, Costa BB, Carmo LF, Martins A, Pombal Jr JP, 298: 39-54., , 2022

      2. Amphibians, Wake DB, Koo MS., 28: R1237-R1241, , 2018

      3. Amphibian hematology, Allender MC, Fry MM, 11: 463-480, , 2008

      4. Valuing common species, Gaston KJ, 327: 154-155, , 2010

      5. Conservation physiology, Wikelski M, Cooke SJ, ; 21: 38-46, , 2006

      6. Endocrinology of stress, Romero ML, Butler LK, 20, , 2007

      7. Insect seasonality: why?, Wolda H., 19: 1-18, , 1988

      8. How green is greenenergy?, Gibson L, Wilman EN, Laurance WF, 32: 922-935, , 2017

      9. Reptile hepatic lipidosis, Divers SJ, Cooper JE, 9: 153-164, , 2000

      10. Ecoimmunology at spatial scales, Forbes KM, 89: 2210-2213, , 2020

      1. Untangling the morphological contradiction: First ontogenetic description of the post-hatching skeleton of the direct-developing frog Brachycephalus garbeanus Miranda-Ribeiro, 1920 (Amphibia: Anura: Brachycephalidae) with comments on the genus miniaturization, Folly M, Costa BB, Carmo LF, Martins A, Pombal Jr JP, 298: 39-54., , 2022

      2. Amphibians, Wake DB, Koo MS., 28: R1237-R1241, , 2018

      3. Amphibian hematology, Allender MC, Fry MM, 11: 463-480, , 2008

      4. Valuing common species, Gaston KJ, 327: 154-155, , 2010

      5. Conservation physiology, Wikelski M, Cooke SJ, ; 21: 38-46, , 2006

      6. Endocrinology of stress, Romero ML, Butler LK, 20, , 2007

      7. Insect seasonality: why?, Wolda H., 19: 1-18, , 1988

      8. How green is greenenergy?, Gibson L, Wilman EN, Laurance WF, 32: 922-935, , 2017

      9. Reptile hepatic lipidosis, Divers SJ, Cooper JE, 9: 153-164, , 2000

      10. Ecoimmunology at spatial scales, Forbes KM, 89: 2210-2213, , 2020

      11. Overview of Urea and Creatinine, Salazar, J. H., 45: e19-e20, , 2014

      12. Creatine and creatinine metabolism, Wyss M, Kaddurah-Daouk R., 80: 1107-1213, , 2000

      13. Medicine and surgery of amphibians, Gentz EJ, 48: 255-259, , 2007

      14. Conservation genetics of amphibians, Beebee T., 95: 423-427, , 2005

      15. Management of wetlands for wildlife, Gray MJ, Hagy HM, Nyman JA, Stafford JD., volume 3: applications management 121-180., , 2013

      16. Stress hormones and immune function, Marketon JIW, Glaser R., 252: 16-26, , 2008

      17. siar: Stable Isotope Analysis in R., Parnell A, Jackson AJAfAfhCR-pops, R package version 4.2, , 2013

      18. Amphibian declines: future directions, Storfer A., 9: 151-163, , 2003

      19. Ecology and conservation of amphibians, Beebee T., Vol. 7, , 1996

      20. Stable isotopes in ecological research, Rundel PW, Ehleringer JR, Nagy KA, Vol. 68, , 2012

      21. Conservation genetics: where are we now?, Hedrick PW, 16: 629-636, , 2001

      22. Clinical pathology of amphibians: a review, Forzán MJ, Heatley J, Russell KE, Horney B, 46: 11-33, , 2017

      23. Human gut microbes associated with obesity, Ley RE, Turnbaugh PJ, Klein S, Gordon JI, 444: 1022-1023, , 2006

      24. Offshore wind power for marine conservation, Hammar L, Perry D, Gullström M., 6: 66-78, , 2015

      25. Evolutionary integration of the frog cranium, Bon M, Blackburn DC et al, Stanley EL, Bardua C, Das K, Fabre AC, 74: 1200-1215, , 2020

      26. Frogs call at a higher pitch in traffic noise, Velik-Lord M, Parris KM, North JM, 14, , 2009

      27. Allometric aspects of predator-prey interactions, Emerson SB, Greene HW, Charnov EL, 123-139, , 1994

      28. Can common species benefit from protected areas?, Devictor V, Godet L, Julliard R, Couvet D, Jiguet F., ; 139: 29-36., , 2007

      29. Efficient genetic markers for population biology, Sunnucks, P., 15: 199-203, , 2000

      30. Strategies for microsatellite isolation: a review, Zane L, Bargelloni L, Patarnello T., 11: 1-16, , 2002

      31. The effects of temperature on animal gut microbiomes, Sepulveda J, Moeller AH, 11: 384, , 2020

      32. Gut microbiome–immune system interaction in reptiles, Siddiqui R, Maciver SK, Khan NA, 132: 2558-2571, , 2022

      33. Microbiological and clinical aspects of Raoultella spp, Appel TM, Quijano-Martínez N, De La Cadena E, Mojica MF, Villegas MV, 9: 686789, , 2021

      34. Amphibian immunity–stress, disease, and climate change, Rollins-Smith LA, 66: 111-119, , 2017

      35. Cortisol Awakening Response: An Ancient Adaptive Feature, Contreras CM, Gutiérrez-Garcia AG, 2: 29-40, , 2018

      36. Gut microbiotas and host evolution: scaling up symbiosis, Shapira M., 31: 539-549, , 2016

      37. Commonness, population depletion and conservation biology, Gaston, K. J., & Fuller, R. A, 23: 14-19, , 2008

      38. Physiology, environmental change, and anuran conservation, Navas CA, Otani L., 6: 83-103, , 2007

      39. Parasites, bright males, and the immunocompetence handicap, Folstad I, Karter AJ, 139: 603-622, , 1992

      40. Understanding fish habitat ecology to achieve conservation, Rice J, 67: 1-22, , 2005

      41. What are the best correlates of predicted extinction risk?, O'Grady JJ, Reed DH, Brook BW, Frankham R., 118: 513-520, , 2004

      42. Biodiversity indicators: the choice of values and measures., Duelli P, Obrist MK., 98: 87-98., , 2003

      43. Health effects and wind turbines: A review of the literature, Knopper LD, Ollson CA, 10: 1-10, , 2011

      44. Late Cambrian biogeography: conodont bioprovinces from Korea, Jeong H, Lee YI, ; 162: 119-136., , 2000

      45. Modeling count data of rare species: some statistical issues, Cunningham RB, Lindenmayer DB, 86: 1135-1142, , 2005

      46. Role of the gut microbiota in human nutrition and metabolism, Ramakrishna BS, 28: 9-17, , 2013

      47. Temperature relations The ecology and behavior of amphibians, eds. Wells K, Wells K., pp. 122-156, , 2007

      48. Effects of inbreeding on the genetic diversity of populations, Charlesworth D., 358: 1051-1070, , 2003

      49. Gut microbiota, immunity, and disease: a complex relationship, Kosiewicz MM, Zirnheld AL, Alard P., 2: 180, , 2011

      50. Physiological ecology of aquatic overwintering in ranid frogs, Tattersall GJ, Ultsch GR, 83: 119-140, , 2008

      51. Stress, testosterone, and the immunoredistribution hypothesis, Braude S, Tang-Martinez Z, Taylor GT, ; 10: 345-350, , 1999

      52. Sex differences in parasite infections: patterns and processes, Zuk M, McKean KA, 26: 1009-1024, , 1996

      53. Evolution of hyperossification expands skull diversity in frogs, Blackburn DC, Stanley EL, Paluh DJ, 117: 8554-8562, , 2020

      54. The gut microbiota—masters of host development and physiology, Bäckhed F., Sommer F, 11: 227-238, , 2013

      55. Amphibian molecular ecology and how it has informed conservation, McCartney‐Melstad E, Shaffer HB, 24: 5084-5109, , 2015

      56. Clinical technique: amphibian hematology: a practitioner's guide, Heatley JJ, Johnson M., 18: 14-19, , 2009

      57. Inference of population structure using multilocus genotype data, Pritchard, J. K., Stephens, M., & Donnelly, P., ; 155: 945-959., , 2000

      58. Anuran vocal communication The ecology and behavior of amphibians, eds. Wells K, Wells KD, pp. 268-337, , 2007

      59. Cortisol levels in central adrenal insufficiency: light and shade, Vincenzo De Sanctis M, Soliman A, Yassin M, Garofalo P., ; 12, , 2015

      60. A review on wind turbine noise mechanism and de-noising techniques, Liu W., 108: 311-320, , 2017

      61. Restructuring of the amphibian gut microbiota through metamorphosis, Kohl KD, Cary TL, Karasov WH, Dearing MD, 5: 899-903, , 2013

      62. A secreted antibacterial neuropeptide shapes the microbiome of Hydra, Murillo Rincón AP Fraune S, Augustin R Schröder K, Anton-Erxleben F Herbst E-M, et al, 8: 698, , 2017

      63. Antimicrobial capacity of plasma from anurans of the Atlantic Forest, Assis VR, Titon SCM, Barsotti AMG, Spira B, Gomes FR., 8: 155-160, , 2013

      64. Ecological correlates of extinction proneness in tropical butterflies, Koh LP, Sodhi NS, Brook BW, 18: 1571-1578, , 2004

      65. Effects of noise and by-catch on a Danish harbour porpoise population, Nabe-Nielsen J, Sibly RM, Tougaard J, Teilmann J, Sveegaard S., 272: 242-251, , 2014

      66. Variation in heritability of tadpole growth: an experimental analysis, Uller T, Olsson M, Ståhlberg F., 88: 480-484, , 2002

      67. microeco: an R package for data mining in microbial community ecology, Liu C, Li X, Yao M., Cui Y, 97: fiaa255, , 2021

      68. A review of post-war changes in rice farming and biodiversity in Japan, Katayama N, Baba YG, Kusumoto Y, Tanaka K., 132: 73-84, , 2015

      69. Adegenet: a R package for the multivariate analysis of genetic markers, Jombart T., 24: 1403-1405, , 2008

      70. Anesthetic efficacy of MS-222 in White's tree frogs (Litoria caerulea), Krisp AR, Hausmann JC, Sladky KK, Mans C., 30: 38-41, , 2020

      71. Evidence for selective avoidance of traffic noise by anuran amphibians, Grace M, Noss R., 21: 343-351, , 2018

      72. Functional interactions between the gut microbiota and host metabolism, Tremaroli V, Bäckhed F., 489: 242-249, , 2012

      73. Gut microbiota as a missing link between nutrients and traits of human, Chung H-J, Nguyen TT, Kim H-J, Hong S-T, 1510, , 2018

      74. Is cooling then freezing a humane way to kill amphibians and reptiles?, Shine R, Amiel J, Lesku JA, Vyssotski AL, Stewart M, Munn AJ, Biology Open 4: 760-763, , 2015

      75. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data, Asshauer KP, Wemheuer B, Daniel R, Meinicke P., 31: 2882-2884, , 2015

      76. Wind Turbine Noise Behaviorally and Physiologically Changes Male Frogs, Park J-K, Do Y, 11: 516, , 2022

      77. Habitat use by small mammals in coastal marshes of southwestern Louisiana, Martin RP, Hamilton RB, McKenzie PM, Chabreck RH, Dell DA, 14: 107-110, , 1991

      78. Patterns of temperature induced developmental plasticity in anuran larvae, Ruthsatz K, Peck MA Dausmann KH Sabatino NM, Glos J, 74: 123-132, , 2018

      79. Changes in blood chemistry in broiler chickens during the fattening period, Piotrowska A, Burlikowska K, Szymeczko R., 59: 183-187, , 2011

      80. Does inbreeding and loss of genetic diversity decrease disease resistance?, Spielman D, Brook BW, Briscoe DA, Frankham R., 5: 439-448, , 2004

      81. Health effects related to wind turbine noise exposure: a systematic review, Schmidt JH, Klokker M., 9: e114183, , 2014

      82. How to make a common species rare: a case against conservation complacency, Lindenmayer D, Wood J, McBurney L, MacGregor C, Youngentob K, Banks S., 144: 1663-1672, , 2011

      83. Utilization of energy substrates during calling activity in tropical frogs, Bevier CR, 41: 343-352, , 1997

      84. Acute stress, steroid plasma levels, and innate immunity in Brazilian toads, Assis VR, Titon SCM, Gomes FR, 273: 86-97, , 2019

      85. Turbid wakes associated with offshore wind turbines observed with Landsat 8, Ruddick K., Vanhellemont Q, 145: 105-115, , 2014

      86. Insects potential: understanding the functional role of their gut microbiome, Munoz-Benavent M, Perez-Cobas AE, Garcia-Ferris C, Moya A, Latorre A., 194: 113787, , 2021

      87. Wind turbines cause chronic stress in badgers (Meles meles) in Great Britain, Agnew RC, Smith VJ, Fowkes RC, 52: 459-467, , 2016

      88. Evaluating habitat quality of vertebrates using conservation physiology tools, Homyack JA, ; 37: 332-342, , 2010

      89. Pathways and functions of gut microbiota metabolism impacting host physiology, Krishnan S, Alden N, Lee K., 36: 137-145, , 2015

      90. Effect of handling time and repeated sampling on avian white blood cell counts, Davis AK, 76: 334-338, , 2005

      91. Seasonal variation in gut microbiota related to diet in Fejervarya limnocharis, Huang C, Liao W., 11: 1393, , 2021

      92. Stress, reproduction, and adrenocortical modulation in amphibians and reptiles, Moore IT, Jessop TS, 43: 39-47, , 2003

      93. Effects of traffic noise on the calling behavior of two Neotropical hylid frogs, Caorsi VZ, Both C, Cechin S, Antunes R, Borges-Martins M., 12: e0183342, , 2017

      94. Physiological response of Pelophylax nigromaculatus adults to salinity exposure, Park J-K, Do Y., 10: 1698, , 2020

      95. Wind energy development and wildlife conservation: challenges and opportunities, Kuvlesky Jr WP, Brennan LA, Morrison ML, Boydston KK, Ballard BM, Bryant FC, 71: 2487-2498, , 2007

      96. Evaluating the physical condition of Hyla japonica using radiographic techniques, Do Y, Park J-K, 726: 138596, , 2020

      97. Factors affecting male yearly mating success in the common frog, Rana temporaria, Elmberg J, 28: 125-131, , 1991

      98. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance, Hughes AR, Stachowicz JJ, 101: 8998-9002, , 2004

      99. Glucose concentration regulates freeze tolerance in the wood frog Rana sylvatica, Costanzo J, Lee R, Lortz PH., 181: 245-255, , 1993

      100. Seasonal variations in fat body metabolism of the green frog Rana esculenta (L.), Schlaghecke R, Blüm V., 34: 1019-1020, , 1978

      101. Asymmetric competition over calling sites in two closely related treefrog species, Borzée A, Kim JY, Jang Y., ; 6: 1-12., , 2016

      102. Effects of environmental temperature on the gut microbial communities of tadpoles, Kohl KD, Yahn J, 18: 1561-1565, , 2016

      103. PAST: Paleontological statistics software package for education and data analysis, Hammer Ø, Harper DA, Ryan PD, ; 4: 9, , 2001

      104. Review of the current status, technology and future trends of offshore wind farms, Díaz H Soares CG, 209: 107381, , 2020

      105. Effects of traffic noise on tree frog stress levels, immunity, and color signaling, Troïanowski M, Mondy N, Dumet A, Arcanjo C, Lengagne T., 31: 1132-1140, , 2017

      106. Occurrence and genetic diversity of new populations of Halyomorpha halys in Europe, Gariepy T, Bruin A, Haye T, Milonas P, Vétek G., 88: 451-460, , 2015

      107. Occurrence of amphibians in saline habitats: a review and evolutionary perspective, Hopkins GR, Brodie Jr ED, 29: 1-27, , 2015

      108. Feeding habits of the Japanese tree frog, Hyla japonica, in the reproductive season, Hirai T, Matsui M., 17: 977-982, , 2000

      109. Ability of wildlife overpasses to provide connectivity and prevent genetic isolation, Hackländer K, Frey‐Roos F., Corlatti L, 23: 548-556, , 2009

      110. Collecting baseline corticosterone samples in the field: is under 3 min good enough?, Romero LM, Reed JM., 140: 73-79., , 2005

      111. Investment in defense and cost of predator-induced defense along a resource gradient, Steiner UK, 152: 201-210, , 2007

      112. Using stable isotopes to estimate trophic position: Models, methods, and assumptions, Post, D. M., 83: 703-718, , 2002

      113. A simplified table for staging anuran embryos and larvae with notes on identification, Gosner KL, 16: 183-190, , 1960

      114. Canidae volume bone mineral density values: an application to sites in western Canada, Novecosky BJ, Popkin PR, 32: 1677-1690, , 2005

      115. Raoultella spp.—clinical significance, infections and susceptibility to antibiotics, Sękowska A., 62: 221-227, , 2017

      116. Heterochrony and frogs: the relationship of a life history trait to morphological form, Emerson SB, 127: 167-183, , 1986

      117. The effect of temperature on development and behaviour of relict leopard frog tadpoles, Goldstein JA, Hoff KvS, Hillyard SD, 5: cow075, , 2017

      118. Wind turbine acoustic investigation: Infrasound and low-frequency noise—a case study, Rand RW, Krogh CM, Ambrose SE, 32: 128-141, , 2012

      119. Characterizing tissue enzyme activities of Cuban tree frogs (Osteopilus septentrionalis), Bogan Jr JE, Mitchell MA, 27: 22-28, , 2017

      120. Concepts of normality in clinical biochemistry Clinical biochemistry of domestic animals, Farver TB, eds. Kaneko J, Harvey J, Bruss M, pp. 1-19, , 1997

      121. Effects of captivity and season on the gut microbiota of the brown frog (Rana dybowskii), Bie J, Liu X-N, Tong Q, Hu Z-F, Wang H-B et al, Ding J-F, 10: 1912, , 2019

      122. Gut microbiota, metabolism and psychopathology: A critical review and novel perspectives, Groen RN, de Clercq NC, Nieuwdorp M, Hoenders HR, Groen AK, 55: 283-293, , 2018

      123. Simple quantification of blood and plasma antimicrobial capacity using spectrophotometry, Liebl AL, Martin II LB, 23: 1091-1096, , 2009

      124. Use of femur bone density to segregate wild from farmed Dybowski's frog (Rana dybowskii), Yang SH, Huang XM, Xia R, Xu YC, Dahmer TD, 207: 61-65, , 2011

      125. genepop007: a complete re‐implementation of the genepop software for Windows and Linux, Rousset F., 8: 103-106, , 2008

      126. Dynamical calling behavior experimentally observed in Japanese tree frogs (Hyla japonica), Aihara I, Horai S, Kitahata H, Aihara K, Yoshikawa K., 90: 2154-2161, , 2007

      127. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations, McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL, 6: 588-596, , 2012

      128. Environmental and host effects on skin bacterial community composition in Panamanian frogs, Green DM, Lesbarreres D, Ibanez R, Varela BJ, 9: 298, , 2018

      129. Feeding relationships between Hyla japonica and Rana nigromaculata in rice fields of Japan, Hirai T, Matsui M., 662-667, , 2002

      130. Health effects related to wind turbine sound, including low-frequency sound and infrasound, Van Kamp I, Van Den Berg F., 46: 31-57, , 2018

      131. Seasonal variations in the intestinal microbiota of farmed Atlantic salmon (Salmo salar L., Hovda MB, Fontanillas R, McGurk C, Obach A, Rosnes JT, 43: 154-159, , 2012

      132. Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts, Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS, 80: 710-730, , 2011

      133. Bigger or faster? Spring and summer tadpole cohorts use different life‐history strategies, Kuan SH, Lin Y, 285: 165-171, , 2011

      134. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs, Tennessen JB, Parks SE, Langkilde T., ; 2, , 2014

      135. Traffic noise differentially impacts call types in a Japanese treefrog (Buergeria japonica), Legett HD, Madden RP, Aihara I, Bernal XE, 126: 576-583, , 2020

      136. Biochemical and hematologic reference intervals for aged Xenopus laevis in a research colony, Chang AG, Hu J, Lake E, Bouley DM, Johns JL, 54: 465-470, , 2015

      137. Causes of mortality in anuran amphibians from an ex situ survival assurance colony in Panama, Pessier AP, Baitchman EJ, Crump P, Wilson B, Griffith E, Ross H., 33: 516-526, , 2014

      138. Refining and defining riverscape genetics: How rivers influence population genetic structure, Davis CD, Epps CW, Flitcroft RL, Banks MA, 5: e1269, , 2018

      139. Serum chemistry and hematology values for anesthetized American bullfrogs (Rana catesbeiana), Cathers T, Lewbart GA, Correa M, Stevens JB, : 171-174, , 1997

      140. The behavioral ecology of anuran communication Hearing and sound communication in amphibians, eds. Narins PM, Feng AS, Fay RR, Popper AN), Wells KD, Schwartz JJ, pp. 44-86, , 2007

      141. Detecting the number of clusters of individuals using the software STRUCTUREa simulation study, Evanno, G., Regnaut, S., & Goudet, J, 14: 2611-2620, , 2005

      142. Exposure to copper altered the intestinal microbiota in Chinese brown frog (Rana chensinensis), Chai L., Wang H, Yang Y, Song X, Chen A, 27: 13855-13865, , 2020

      143. The effect of social interactions on calling energetics in the gray treefrog (Hyla versicolor), Wells KD, Taigen TL, ; 19: 9-18, , 1986

      144. Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress, Gomez-Mestre I, Tejedo M, Ramayo E, Estepa J., 77: 267-274, , 2004

      145. Environmental and social footprint of offshore wind energy. Comparison with onshore counterpart, Kaldellis JK Apostolou D Kapsali M, Kondili E., 92: 543-556, , 2016

      146. Habitat fragmentation by a levee and its Impact on frog population in the civilian control zone, Ju J, Kim JH, Kim SH, 18: 113-120, , 2016

      147. Mechanisms and consequences of developmental acceleration in tadpoles responding to pond drying, Gomez-Mestre I, Kulkarni S, Buchholz DR., 8: e84266, , 2013

      148. Amphibians and conservation breeding programmes: do all threatened amphibians belong on the ark?, Tapley B, Bradfield KS, Michaels C, Bungard M., 24: 2625-2646, , 2015

      149. Dietary live yeast and increased water temperature influence the gut microbiota of rainbow trout, Huyben D, Sun L, Moccia R, Kiessling A, Dicksved J, Lundh T., 124: 1377-1392, , 2018

      150. Do host‐associated gut microbiota mediate the effect of an herbicide on disease risk in frogs?, Gabor CR, Knutie SA, Kohl KD, Rohr JR., 87: 489-499, , 2018

      151. Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance?, Casey A, Greenhaff PL, 72: 607S-617S, , 2000

      152. Environmental and host factors shaping the gut microbiota diversity of brown frog Rana dybowskii, Tong Q, Cui L-Y, Hu Z-F, Du X-P, Abid HM, Wang H-B, 741: 140142, , 2020

      153. Oxygen consumption during resting, calling, and nest building in the frog Physalaemus pustulosus, Bucher TL, Ryan MJ, Bartholomew GA., ; 55: 10-22, , 1982

      154. Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance, Turon X, Erwin PM, Pita L, López-Legentil S, 78: 7358-7368, , 2012

      155. Disturbance induced decoupling between host genetics and composition of the associated microbiome, Eiler A., Volkenborn N Peter H, Wegner KM, 13: 1-12, , 2013

      156. Immunocompetence handicap hypothesis in tree frog: trade-off between sexual signals and immunity?, Desprat JL, Lengagne T, Dumet A, Desouhant E, Mondy N., 26: 1138-1146, , 2015

      157. Hormones and mating system affect sex and species differences in immune function among vertebrates, Klein SL, 51: 149-166, , 2000

      158. The lasting effects of adaptive plasticity: predator‐induced tadpoles become long‐legged frogs, Relyea RA, 82: 1947-1955, , 2001

      159. Energetic constraints and steroid hormone correlates of male calling behaviour in the túngara frog, Marler C, Ryan M., 240: 397-409, , 1996

      160. Genetic isolation among mountains but not between stream types in a tropical high‐altitude mayfly, Hampel H., Encalada AC, Finn DS, 61: 702-714, , 2016

      161. Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect, Finn DS, Theobald DM, BLACK IV WC, Poff NL, 15: 3553-3566, , 2006

      162. Use of metabolic substrates in the gray treefrog Hyla versicolor. implications for calling behavior, Grafe U, 356-362., , 1997

      163. Assay validation and interspecific comparison of salivary glucocorticoids in three amphibian species, Hammond TT, Au ZA, Hartman AC, Richards-Zawacki CL, 6: coy055, , 2018

      164. Biophysical connectivity explains population genetic structure in a highly dispersive marine species, Kough AS, Paris CB, Preziosi RF et al, Truelove NK, Box SJ, Behringer DC, 36: 233-244, , 2017

      165. Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds, Matson KD, Tieleman BI, Klasing KC, 79: 556-564, , 2006

      166. Intraspecific scaling in frog calls: the interplay of temperature, body size and metabolic condition, Ziegler L, Arim M, Bozinovic F., 181: 673-681, , 2016

      167. Blood chemistry profile as indicator of nutritional status in European seabass (Dicentrarchus labrax), Peres H, Santos S, Oliva-Teles A, 40: 1339-1347, , 2014

      168. Japanese freshwater fishes: biogeography and cryptic diversity. Species Diversity of Animals in Japan, Watanabe K, Tominaga K, Nakajima J, Kakioka R, Tabata R., pp. 183-227, , 2017

      169. Habitat associations of California ground squirrels and Botta's pocket gophers on levees in California, Van Vuren DH, Draper JP, Ordeñana MA, 76: 1712-1717, , 2012

      170. The effects of acute water ingestion on body composition analyses via Dual-Energy X-Ray Absorptiometry, Barreira TV, Tseh W., 39: 3836-3838, , 2020

      171. Complex life cycles and the ecology of amphibian metamorphosis The ecology and behavior of amphibians (, Wells K., eds. Wells K, pp. 599-644, , 2007

      172. Skeletal Differences in Lower Body and Limbs in Relation to Ecological Traits in Anurans in South Korea, Park J-K, Kang TG, Lee J-E, Kim J-E, Kim Y, Do Y., 3: 32-40, , 2022

      173. Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian, Kohl KD, Fontaine SS, Novarro AJ, 221: jeb187559, , 2018

      174. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis, Richter‐Boix A, Tejedo M, Rezende EL, 1: 15-25, , 2011

      175. Microhabitat use by Hyla japonica and Pelophylax porosa brevipoda at levees in rice paddy areas of Japan, Naito R, Sakai M, Natuhara Y, Morimoto Y, Shibata S., 30: 386-391, , 2013

      176. Oral immunization of the African clawed frog (Xenopus laevis) upregulates the mucosal immunoglobulin IgX, Du CC, Mashoof SM, Criscitiello MF, 145: 493-498, , 2012

      177. Anesthetic MS-222 eliminates nerve and muscle activity in frogs used for physiology teaching laboratories, Medler S., Advances in Physiology Education 43: 69-75, , 2019

      178. Effect of natural and synthetic noise on evoked vocal responses in a frog of the temperate austral forest, Penna M, Pottstock H, Velasquez N., 70: 639-651, , 2005

      179. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update, Peakall RS, PE, 28: 2537, , 2012

      180. Skin bacterial microbiome of a generalist Puerto Rican frog varies along elevation and land use gradients, Hughey MC, Pena JA, Reyes R, Medina D, Belden LK, Burrowes PA, 5: e3688, , 2017

      181. The shape of things to come: linking developmental plasticity to post‐metamorphic morphology in anurans, Warkentin KM, Rosenthal GG, Saccoccio VL, Gomez‐Mestre I, Iijima T, Collins E, 23: 1364-1373, , 2010

      182. Hematologic and plasma biochemical reference intervals for health monitoring of wild Australian tree frogs, Young S, Warner J, Speare R, Berger L, Skerratt LF, Muller R., 41: 478-492, , 2012

      183. Delayed costs of an induced defense in tadpoles? Morphology, hopping, and development rate at metamorphosis, Buskirk JV, Saxer G., 55: 821-829, , 2001

      184. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis, Estoup A, Jarne P, Cornuet JM, 11: 1591-1604, , 2002

      185. Distinct microbiotas of anatomical gut regions display idiosyncratic seasonal variation in an avian folivore, Drovetski SV, O’Mahoney MJ, Matterson KO, Schmidt BK, Graves GR, 1: 1-11, , 2019

      186. Fine-scale genetic structure of the endangered bitterling in the middle river basin of the Kiso River, Japan, Yamazaki Y, Kitamura J-i, Ikeya K, Mori S., 149: 179-190, , 2021

      187. Population size and time since island isolation determine genetic diversity loss in insular frog populations, Li X, Wang S, Yan S, Gao X, Zhu W, Liu X et al, 23: 637-648, , 2014

      188. Scale‐dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks, Sepulveda AJ Lowe WH, Schwartz MK, Mullen LB Arthur Woods H, 19: 898-909, , 2010

      189. Stream flow alone does not predict population structure of diving beetles across complex tropical landscapes, Van Dam MH, Kindler C, Panjaitan R, Toussaint EF, Lam A, Roderick GK, et al, 27: 3541-3554, , 2018

      190. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues, Sweeting C, Polunin N, Jennings S., 20: 595-601, , 2006

      191. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition, Potapov AM, Tiunov AV, Scheu S., 94: 37-59, , 2019

      192. Changes in Tissue Lipids in Response to Diet: I. Fatty Acids of Subcutaneous, Mesenteric and Interscapular Fat, Ostwald R, Okey R, Shannon A, Tinoco J, ; 76: 341-352, , 1962

      193. Dietary protein restriction impairs growth, immunity, and disease resistance in southern leopard frog tadpoles, Venesky MD, Wilcoxen TE, Rensel MA, Rollins-Smith L, Kerby JL, Parris MJ, ; 169: 23-31., , 2012

      194. Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes, Jackson ND, Fahrig L., 31: 951-968, , 2016

      195. Radiographic diagnosis of metabolic bone disease in captive bred mountain chicken frogs (Leptodactylus fallax), King JD, Muhlbauer MC, James A., ; 30: 254-259., , 2011

      196. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method, Earl DA, 4: 359-361, , 2012

      197. A DNA investigation into the mysterious disappearance of the Rocky Mountain grasshopper, mega-pest of the 1800s, Chapco W, Litzenberger G., 30: 810-814, , 2004

      198. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet, Tieszen LL, Boutton TW, Tesdahl KG, Slade NA, ; 57: 32-37, , 1983

      199. Rampant drift in artificially fragmented populations of the endangered tidewater goby (Eucyclogobius newberryi), McCRANEY WT, Goldsmith G, Jacobs DK, Kinziger AP, 19: 3315-3327, , 2010

      200. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Excoffier L, Lischer HE, 10: 564-567, , 2010

      201. Immunomodulation by testosterone and corticosterone in toads: Experimental evidences from transdermal application, Madelaire CB, de Oliveira Cassettari B, Gomes FR, 273: 227-235, , 2019

      202. Overwintering adaptations and extreme freeze tolerance in a subarctic population of the wood frog, Rana sylvatica, Costanzo JP, 189: 1-15, , 2019

      203. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations, Jombart T, Devillard S, Balloux F., ; 11: 94, , 2010

      204. Effects of pond drying on morphological and life-history traits in the anuran Rhinella spinulosa (Anura: Bufonidae), Márquez-García M, Correa-Solis M, Sallaberry M, Méndez M., 11: 803-815, , 2009

      205. No short-term effect of handling and capture stress on immune responses of bats assessed by bacterial killing assay, Strobel S, Becker NI, Encarnação JA, 80: 312-315, , 2015

      206. Cold block of in vitro eyeblink reflexes: evidence supporting the use of hypothermia as an anesthetic in pond turtles, Keifer J, Zheng Z, 220: 4370-4373, , 2017

      207. Dynamics of food availability, body condition and physiological stress response in breeding black‐legged kittiwakes, Kitaysky A, Wingfield J, Piatt JF, 13: 577-584, , 1999

      208. Live animal radiography to measure developmental instability in populations of small mammals after a natural disaster, Hopton ME, Cameron GN, Cramer MJ, Polak M, Uetz GW, 9: 883-891, , 2009

      209. Season and testosterone affect contractile properties of fast calling muscles in the gray tree frog Hyla chrysoscelis, Girgenrath M, Marsh RL, 284: R1513-R1520, , 2003

      210. ACTH modulation on corticosterone, melatonin, testosterone and innate immune response in the tree frog Hypsiboas faber, Barsotti AMG, de Assis VR, Titon SCM, Junior BT, da Silva Ferreira ZF, Gomes FR, 204: 177-184, , 2017

      211. Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria, Lindgren B, Laurila A., ; 18: 820-828., , 2005

      212. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models, Cotter P, Marques TM, Healy S, Murphy E, Fouhy F, et al, O'sullivan O, 59: 1635-1642, , 2010

      213. Hot tadpoles from cold environments need more nutrients–life history and stoichiometry reflects latitudinal adaptation, Liess A, Thomsson G, Rowe O, Lind MI, Guo J, 82: 1316-1325, , 2013

      214. Do anurans living in higher altitudes have higher prehibernation energy storage? Investigations from a high-altitude frog, Chen W, Wang X, Fan X, 23: 45-49., , 2013

      215. Seasonality in terai tree frog (Polypedates teraiensis): Role of light and temperature in regulation of seasonal breeding, Borah BK, Renthlei Z, Trivedi AK, 191: 44-51, , 2019

      216. Development and characterization of 13 polymorphic microsatellite DNA markers for the pond green frog (Rana nigromaculata), Gong J, Lan H, Fang S-G, Wan Q-H., : 1-4, , 2010

      217. Evaluation of MS-222 (tricaine methanesulfonate) and propofol as anesthetic agents in Sonoran desert toads (Bufo alvarius), Wojick KB, Langan JN, Mitchell MA, 20: 79-83, , 2010

      218. Traffic noise correlates with calling time but not spatial distribution in the threatened poison frog Andinobates bombetes, Vargas-Salinas F, Amézquita A, 150: 569-584, , 2013

      219. Composition and functional specialists of the gut microbiota of frogs reflect habitat differences and agricultural activity, Huang B-H, Gao J, Liao P-C, Chang C-W, Huang C-W, Frontiers in Microbiology 8: 2670, , 2018

      220. Ecology and taxonomy‐driven deviations in the frog call–body size relationship across the diverse Australian frog fauna, James S, Grigg G., Hoskin C, 278: 36-41, , 2009

      221. A rapid effect of handling on counts of white blood cells in a wintering passerine bird: a more practical measure of stress?, Cīrule D, Krama T, Vrublevska J, Rantala MJ, Krams I, 153: 161-166, , 2012

      222. Determination of periprosthetic bone density with the DEXA method after implantation of custom-made uncemented femoral stems, Martini F, Sell S, Kremling E, Küsswetter W., 20: 218-221, , 1996

      223. Effects of dietary sodium chloride intake on renal function and blood pressure in cats with normal and reduced renal function, Buranakarl C, Mathur S, Brown SA., 65: 620-627, , 2004

      224. Effects of wind turbine noise on the surrounding soundscape in the context of greater-prairie chicken courtship vocalizations, Whalen CE, Brown MB, McGee J, Powell LA, Walsh EJ, 153: 132-139, , 2019

      225. Reference intervals in combined veterinary clinical examinations of male black-spotted pond frogs (Pelophylax nigromaculatus), Park J-K, Kim J-B, Do Y, 11: 1407, , 2021

      226. Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (Fejervarya limnocharis) in subtropical Taiwan, Liu W-Y, Wang C-Y, Wang T-S, Fellers GM, Lai B-C, Kam Y-C., 20: 377-384, , 2011

      227. Diversity of floodplain copepods (Crustacea) modified by flooding: species richness, diapause strategies and population genetics, Frisch D, Libman BS, D'Surney SJ, Threlkeld ST., 162: 1-18, , 2004

      228. Spatial diet overlap and food resource in two congeneric mullet species revealed by stable isotopes and stomach content analyses, Garcia A Garcia A, Vollrath S Schneck F Silva C, Marchetti Í et al, 19: 116-124, , 2018

      229. No reproductive character displacement in male advertisement signals of Hyla japonica in relation to the sympatric H. suweonensis, Park S, Jeong G, Jang Y, 67: 1345-1355, , 2013

      230. Seasonal Pattern of Advertisement Calling and Physiology in Prolonged Breeding Anurans, Japanese Tree Frog (Dryophytes japonicus), Park J-K, Do Y, 13: 1612, , 2023

      231. The effect of airplane noise on frogs: a case study on the critically endangered Pickersgills reed frog (Hyperolius pickersgilli), Du Preez LH, Kruger DJ, 31: 393-405, , 2016

      232. Effects of seasonal hibernation on the similarities between the skin microbiota and gut microbiota of an amphibian (Rana dybowskii), Tong Q Hu Z-f Du X-p, Bie J, Wang H-b, 79: 898-909, , 2020

      233. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability, Perotti MG, Bonino MF, Ferraro D, Cruz FB, 127: 95-105, , 2018

      234. The effect of atrazine on intestinal histology, microbial community and short chain fatty acids in Pelophylax nigromaculatus tadpoles, Huang M-Y, Zhao Q Duan R-Y, Liu Y, Wan Y-Y, 288: 117702, , 2021

      235. Assessment of body condition in amphibians using radiography: Relationship between bone mineral density and food resource availability, Park JK, Do Y, 52: 358-365, , 2019

      236. Diagnosis of liver disease in birds by radiography and ultrasonography: under special consideration of ultrasound-guided liver biopsies, Krautwald-Junghanns M-E, Zebisch K, Enders F, Pees M, Willuhn J, 10: 153-161, , 2001

      237. Vocal and territorial behavior in the Smith frog (Hypsiboas faber): Relationships with plasma levels of corticosterone and testosterone, Assis VR, Navas CA, Mendonça MT, Gomes FR, 163: 265-271., , 2012

      238. Corticosterone-mediated physiological stress modulates hepatic lipid metabolism, metabolite profiles, and systemic responses in chickens, Zaytsoff SJ, Brown CL Montina T Metz GA Abbott DW, Uwiera RR et al, 9: 1-13, , 2019

      239. Examination of physiological and morphological differences between farm-bred and wild black-apotted pond frogs (Pelophylax nigromaculatus), Park J-K, Kim JB, Do Y, 11: 1089, , 2021

      240. Vocalisation and its association with androgens and corticosterone in a night frog (Nyctibatrachus humayuni) with unique breeding behaviour, Joshi AM, Narayan EJ, Gramapurohit NP, 125: 774-784, , 2019

      241. Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations, Hawley DM, Altizer SM, 25: 48-60, , 2011

      242. Growth and fat body cycles in feral populations of the African clawed frog, Xenopus laevis (Pipidae) in California with comments on reproduction, McCoid MJ, Fritts TH, 34: 499-505, , 1989

      243. Genetic diversity and population genetic structure of black-spotted pond Frog (Pelophylax nigromaculatus) distributed in South Korean river basins, Park J-K, Yoo N, Do Y, 2: 120-128, , 2021

      244. Relationship between metabolic bone disease and bone mineral density measured by dual‐energy X‐ray absorptiometry in the green iguana (Iguana iguana), Zotti A, Selleri P, Carnier P, Morgante M, Bernardini D., 45: 10-16, , 2004

      245. Temporal variation in behavioral responses to dietary cues from a gape‐limited predator in tadpole prey: A test of the phylogenetic relatedness hypothesis, Mori A., Ramamonjisoa N, Ethology 125: 628-634, , 2019

      246. Negative effects of deep roadside ditches on Pelophylax porosa brevipoda dispersal and migration in comparison with Hyla japonica in a rice paddy area in Japan, Naito R, Sakai M, Morimoto Y., ; 29: 599-603., , 2012

      247. The changes in the frog gut microbiome and its putative oxygen-related phenotypes accompanying the development of gastrointestinal complexity and dietary shift, Wang X, Liu L, Chang L et al, Chen H, Zhang M, Xu L, Frontiers in Microbiology 11: 162, , 2020

      248. Anuran amphibians as comparative models for understanding extreme dehydration tolerance: a unique negative feedback lymphatic mechanism for blood volume regulation, Hillman SS, 315: R790-R798, , 2018

      249. Interrelationship between food availability, fat body, and ovarian cycles in the frog, Rana tigrina, with a discussion on the role of fat body in anuran reproduction, Girish S, Saidapur S., 286: 487-493, , 2000

      250. Population Structure and Morphological Pattern of the Black-Spotted Pond Frog (Pelophylax nigromaculatus) Inhabiting Watershed Areas of the Geum River in South Korea, Park J-K, Chung KW, Kim JY, Do Y, 14: 16530, , 2022

      251. Phylogenetic conservatism in skulls and evolutionary lability in limbs–morphological evolution across an ancient frog radiation is shaped by diet, locomotion and burrowing, Keogh JS, Vidal-García M, 17: 1-15, , 2017

      252. Landscape genetics reveal broad and fine‐scale population structure due to landscape features and climate history in the northern leopard frog (Rana pipiens) in North Dakota, Mushet DM, Stockwell CA, Purcell K, Fisher JD, Waraniak JM, 9: 1041-1060, , 2019

      253. Black‐spotted pond frog (Pelophylax nigromaculatus) on the Chinese Loess Plateau represents a cryptic species: Evidence from molecular phylogeny and ecological niche modeling, Ma D, Liu HT, Ji YJ, Zhang DX, Shi CM, Yang YH, 53: 339-350, , 2015

      254. Syntopic frogs reveal different patterns of interaction with the landscape: A comparative landscape genetic study of Pelophylax nigromaculatus and Fejervarya limnocharis from central China, Garcia VOS, Ivy C, Fu J., 7: 9294-9306, , 2017

      255. Breeding under unpredictable conditions: annual variation in gonadal maturation, energetic reserves and plasma levels of androgens and corticosterone in anurans from the Brazilian semi-arid., Madelaire CB, Gomes FR., ; 228: 9-16., , 2016

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼