RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Energy-efficient wing design for flapping wing micro aerial vehicles

      한글로보기

      https://www.riss.kr/link?id=A106343790

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Flapping wing micro aerial vehicles (FWMAVs) have attracted more attention during the development of the robotic systems field. The size of the flapping wing plays an important role in the lift force and torque generation based on quasi-steady aerody...

      Flapping wing micro aerial vehicles (FWMAVs) have attracted more attention during the development of the robotic systems field.
      The size of the flapping wing plays an important role in the lift force and torque generation based on quasi-steady aerodynamic model.
      Therefore, it is necessary to study energy-efficient design methods for wings to provide sufficient lift force and torque with minimal energy consumption for hovering flight. In this paper, the sensitive parameters for the lift force and power consumption were first selected based on design of experiment (DOE) and the parameter of the distributed wing stiffness was determined based on experimental data.
      Design optimization models for three different cases were then built by considering the lift force as one constraint and the energy consumption as the objective function. The combination of subset simulation and the gradient-based optimization was finally used for solving design optimization models, and the corresponding sensitivity analysis was provided.

      더보기

      참고문헌 (Reference)

      1 Z. Wang, "Time-dependent reliability of dynamic systems using subset simulation with splitting over a series of correlated time intervals" 136 (136): 1-12, 2014

      2 Z. Wang, "Time-dependent concurrent reliability-based design optimization integrating experimentbased model validation" 57 (57): 1523-1531, 2018

      3 H. J. Peters, "The optimization of the flapping wings for a micro air vehicle" Delft University of Technology 2011

      4 S. P. Sane, "The aerodynamics of insect flight" 206 (206): 4191-4208, 2003

      5 C. P. Ellington, "The aerodynamics of hovering insect flight, VI. Lift and power requirements" 305 (305): 145-181, 1984

      6 C. P. Ellington, "The aerodynamics of hovering insect flight, II. Morphological parameters" 305 (305): 17-40, 1984

      7 C. P. Ellington, "The aerodynamics of hovering insect flight, I. The quasi-steady analysis" 305 (305): 1-15, 1984

      8 R. Dudley, "The Biomechanics of Insect Flight: Form, Function, Evolution" Princeton University Press 2000

      9 Q. Wang, "Study of design parameters of flapping-wings" 2014

      10 S. Yu, "Sequential time-dependent reliability analysis for the lower extremity exoskeleton under uncertainty" 170 : 45-52, 2018

      1 Z. Wang, "Time-dependent reliability of dynamic systems using subset simulation with splitting over a series of correlated time intervals" 136 (136): 1-12, 2014

      2 Z. Wang, "Time-dependent concurrent reliability-based design optimization integrating experimentbased model validation" 57 (57): 1523-1531, 2018

      3 H. J. Peters, "The optimization of the flapping wings for a micro air vehicle" Delft University of Technology 2011

      4 S. P. Sane, "The aerodynamics of insect flight" 206 (206): 4191-4208, 2003

      5 C. P. Ellington, "The aerodynamics of hovering insect flight, VI. Lift and power requirements" 305 (305): 145-181, 1984

      6 C. P. Ellington, "The aerodynamics of hovering insect flight, II. Morphological parameters" 305 (305): 17-40, 1984

      7 C. P. Ellington, "The aerodynamics of hovering insect flight, I. The quasi-steady analysis" 305 (305): 1-15, 1984

      8 R. Dudley, "The Biomechanics of Insect Flight: Form, Function, Evolution" Princeton University Press 2000

      9 Q. Wang, "Study of design parameters of flapping-wings" 2014

      10 S. Yu, "Sequential time-dependent reliability analysis for the lower extremity exoskeleton under uncertainty" 170 : 45-52, 2018

      11 M. Karásek, "Pitch moment generation and measurement in a robotic hummingbird" 5 (5): 299-309, 2013

      12 E. C. Stewart, "Parametric representation and shape optimization of flapping micro air vehicle wings" 4 (4): 179-202, 2012

      13 Q. Wang, "Optimal pitching axis of flapping-wings for hovering flight" 2014

      14 Q. Wang, "Optimal pitching axis location of flapping wings for efficient hovering flight" 12 (12): 056001-, 2017

      15 Q. Wang, "Optimal hovering kinematics with respect to various flapping-wing shapes" 2013

      16 H. J. Peters, "Optimal FWMAV wing design for a combination of energy-effective hovering and roll control" 7 (7): 41-53, 2015

      17 M. Ghommem, "On the shape optimization of flapping wings and their performance analysis" 32 (32): 274-292, 2014

      18 M. H. Dickinson, "Muscle efficiency and elastic storage in the flight motor of Drosophila" 268 (268): 87-90, 1995

      19 S. Mao, "Lift and power requirements of hovering insect flight" 19 (19): 458-469, 2003

      20 A. L. Schwab, "How to draw Euler angles and utilize Euler parameters" 259-265, 2006

      21 G. J. Berman, "Energy-minimizing kinematics in hovering insect flight" 582 : 153-168, 2007

      22 M. I. Woods, "Energy requirements for the flight of micro air vehicles" 105 (105): 135-149, 2001

      23 R. Madangopal, "Energeticsbased design of small flapping-wing air vehicles" 11 (11): 433-438, 2006

      24 J. M. Wakeling, "Dragonfly flight, III. Lift and power requirements" 200 (200): 583-601, 1997

      25 M. Keennon, "Development of the nano hummingbird: A tailless flapping wing micro air vehicle" 2012

      26 H. S. Li, "Design optimization using subset simulation algorithm" 32 (32): 384-392, 2010

      27 Y. Nan, "An experimental study on effect of wing geometry of hummingbird-like flapping wing in the hover" 2015

      28 D. R. Warrick, "Aerodynamics of the hovering hummingbird" 435 (435): 1094-1097, 2005

      29 M. F. M. Osborne, "Aerodynamic of flapping flight with application to insects" 28 (28): 221-245, 1951

      30 J. M. V. Rayner, "A vortex theory of animal flight, Part 1. The vortex wake of a hovering animal" 91 (91): 731-763, 1979

      31 Z. Wang, "A simulation method to estimate two types of time-varying failure rate of dynamic systems" 138 (138): 1-10, 2016

      32 Q. Wang, "A predictive quasi-steady model of aerodynamic loads on flapping wings" 800 : 688-719, 2016

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼