RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      복합재료역학을 이용한 콜라겐 단백질 마이크로피브릴의 탄성율 예측 개선 = A Simpler Method to Estimate the Elastic Constant of Collagen-like Microfibril Using Voigt-Reuss Bounds

      한글로보기

      https://www.riss.kr/link?id=A101119589

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The effective Young’s modulus of a microfibril surrounded by water may be simply calculated by using the upper (Voigt) and lower (Reuss) bounds, which is one way to estimate the Young’s modulus in composite materials. The Steered Molecular Dynamics (SMD) has been used for estimating the Young’s modulus of a microfibril surrounded by water. In this paper, the result estimated by the upper (Voigt) and lower (Reuss) bounds shows 9.2% to 21.8% discrepancy from the result estimated by SMD, but introducing “efficiency of reinforcement parameter” removes the discrepancy and shows good agreement with the result estimated by SMD. We found the best fit for the Young’s modulus against the size of the gap between microfibrils. Also the steps using these bounds are much simpler than SMD.
      번역하기

      The effective Young’s modulus of a microfibril surrounded by water may be simply calculated by using the upper (Voigt) and lower (Reuss) bounds, which is one way to estimate the Young’s modulus in composite materials. The Steered Molecular Dynamic...

      The effective Young’s modulus of a microfibril surrounded by water may be simply calculated by using the upper (Voigt) and lower (Reuss) bounds, which is one way to estimate the Young’s modulus in composite materials. The Steered Molecular Dynamics (SMD) has been used for estimating the Young’s modulus of a microfibril surrounded by water. In this paper, the result estimated by the upper (Voigt) and lower (Reuss) bounds shows 9.2% to 21.8% discrepancy from the result estimated by SMD, but introducing “efficiency of reinforcement parameter” removes the discrepancy and shows good agreement with the result estimated by SMD. We found the best fit for the Young’s modulus against the size of the gap between microfibrils. Also the steps using these bounds are much simpler than SMD.

      더보기

      참고문헌 (Reference)

      1 Y.J. Yoon, "The estimated elastic constants for a single bone osteonal lamella" 7 (7): 1-11, 2008

      2 Y.J. Yoon, "The elastic moduli estimation of the solid-water mixture" 46 : 527-533, 2009

      3 N. Sasaki, "Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique" 29 : 655-658, 1996

      4 D.K. Dubey, "Role of hydroxyapatite crystal shape in nanoscale mechanical behavior of model tropocollagen-hydroxyapatite hard biomaterials" Materials Science and Engineering,in press 2009

      5 R. Harley, "Phonons and the elastic moduli of collagen and muscle" 267 : 285-287, 1997

      6 H.J.C. Berendsen, "Nuclear magnetic resonace study of collagen hydration" 36 (36): 3297-3305, 1962

      7 S. Vesentini, "Molecular assessment of the elastic properties of collagen-like homotrimer sequences" 3 : 224-234, 2005

      8 C. Hellmich, "Micromechanical model for ultrastructural stiffness of mineralized tissues" 128 : 898-908, 2002

      9 C.B.Anderson, "Mechanics of fluids. In Marks Saturated Handbook for Mechanical Engineers" McGraw-Hill 348-376, 1967

      10 M.P.E. Wenger, "Mechanical properties of collagen fibrils" 93 (93): 1255-1263, 2007

      1 Y.J. Yoon, "The estimated elastic constants for a single bone osteonal lamella" 7 (7): 1-11, 2008

      2 Y.J. Yoon, "The elastic moduli estimation of the solid-water mixture" 46 : 527-533, 2009

      3 N. Sasaki, "Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique" 29 : 655-658, 1996

      4 D.K. Dubey, "Role of hydroxyapatite crystal shape in nanoscale mechanical behavior of model tropocollagen-hydroxyapatite hard biomaterials" Materials Science and Engineering,in press 2009

      5 R. Harley, "Phonons and the elastic moduli of collagen and muscle" 267 : 285-287, 1997

      6 H.J.C. Berendsen, "Nuclear magnetic resonace study of collagen hydration" 36 (36): 3297-3305, 1962

      7 S. Vesentini, "Molecular assessment of the elastic properties of collagen-like homotrimer sequences" 3 : 224-234, 2005

      8 C. Hellmich, "Micromechanical model for ultrastructural stiffness of mineralized tissues" 128 : 898-908, 2002

      9 C.B.Anderson, "Mechanics of fluids. In Marks Saturated Handbook for Mechanical Engineers" McGraw-Hill 348-376, 1967

      10 M.P.E. Wenger, "Mechanical properties of collagen fibrils" 93 (93): 1255-1263, 2007

      11 W.Voigt, "Lehrbuch der Kristallphysik"

      12 J.L.Katz, "Hard tissue as a composite material-1.Bounds on elastic behavior" 4 : 455-473, 1971

      13 U. Akiva, "Elastic constants of three-dimensional orthotropic composites with platelet/ribbon reinforcement" 57 : 173-184, 1997

      14 D. Zhang, "Effect of the structural water on the mechanical properties of collagen-like microfibrils:A molecular dynamics study" 35 (35): 1216-1230, 2007

      15 S. Cusack, "Determination of the elastic constants of collagen by Brilliouin light scattering" 135 : 39-51, 1979

      16 J.M. Crolet, "Compact bone:numerical simulation of mechanical characteristics" 26 : 677-687, 1993

      17 S.C.Cowin, "Bone poroelasticity" 32 : 217-238, 1999

      18 A.Reuss, "Berechnung der Flie?grenze von Mischkristallen auf Grund der Plastizit?tsbedingung fur Einkristalle" (9) : 49-58, 1929

      19 J.H. Kinney, "A micromechanics model of the elastic properties of human dentine" 44 : 813-822, 1999

      20 Q.H. Qin, "A micro-mechanics of dentin mechanical properties" 25 : 5081-5090, 2004

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-10-06 학술지명변경 외국어명 : 미등록 -> Joural of Biomedical Engineering Research KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.08 0.08 0.12
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.11 0.09 0.307 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼