RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Functionalized 2D transition metal dichalcogenide inks via liquid‐phase exfoliation for practical applications

      한글로보기

      https://www.riss.kr/link?id=A108963375

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Transition metal dichalcogenides (TMDs) are promising 2D materials which are attracting significant interest because of their distinctive physicochemical properties. The possibility of being exfoliated and dispersed in liquid solutions offers a viable pathway to scalable production. This personal account focuses on recent advancements in 2D TMD inks produced by liquid‐phase exfoliation (LPE) methods and intercalation‐based electrochemical exfoliation. In particular, different LPE production strategies, like ultrasonication LPE, high‐shear mixing exfoliation, and microfluidization, are introduced alongside a broad range of liquid media employed to provide functionalized TMD inks. The main advantage of TMD inks is its scalability, for practical applications in printed optoelectronics, energy storage, and conversion. Furthermore, the chemical functionalization of TMD inks can solve the poor electrical conductivity attributed to edge defects inherent in TMD inks. Finally, the ultimate orientations for future applications of chemically functionalized TMD devices are forecasted, with a specific focus on wearable and flexible printed electronics.
      번역하기

      Transition metal dichalcogenides (TMDs) are promising 2D materials which are attracting significant interest because of their distinctive physicochemical properties. The possibility of being exfoliated and dispersed in liquid solutions offers a viable...

      Transition metal dichalcogenides (TMDs) are promising 2D materials which are attracting significant interest because of their distinctive physicochemical properties. The possibility of being exfoliated and dispersed in liquid solutions offers a viable pathway to scalable production. This personal account focuses on recent advancements in 2D TMD inks produced by liquid‐phase exfoliation (LPE) methods and intercalation‐based electrochemical exfoliation. In particular, different LPE production strategies, like ultrasonication LPE, high‐shear mixing exfoliation, and microfluidization, are introduced alongside a broad range of liquid media employed to provide functionalized TMD inks. The main advantage of TMD inks is its scalability, for practical applications in printed optoelectronics, energy storage, and conversion. Furthermore, the chemical functionalization of TMD inks can solve the poor electrical conductivity attributed to edge defects inherent in TMD inks. Finally, the ultimate orientations for future applications of chemically functionalized TMD devices are forecasted, with a specific focus on wearable and flexible printed electronics.

      더보기

      다국어 초록 (Multilingual Abstract)

      Transition metal dichalcogenides (TMDs) are promising 2D materials which are attracting significant interest because of their distinctive physicochemical properties.
      The possibility of being exfoliated and dispersed in liquid solutions offers a viable pathway to scalable production. This personal account focuses on recent advancements in 2D TMD inks produced by liquid-phase exfoliation (LPE) methods and intercalation-based electrochemical exfoliation. In particular, different LPE production strategies, like ultrasonication LPE, high-shear mixing exfoliation, and microfluidization, are introduced alongside a broad range of liquid media employed to provide functionalized TMD inks. The main advantage of TMD inks is its scalability, for practical applications in printed optoelectronics, energy storage, and conversion. Furthermore, the chemical functionalization of TMD inks can solve the poor electrical conductivity attributed to edge defects inherent in TMD inks. Finally, the ultimate orientations for future applications of chemically functionalized TMD devices are forecasted, with a specific focus on wearable and flexible printed electronics.
      번역하기

      Transition metal dichalcogenides (TMDs) are promising 2D materials which are attracting significant interest because of their distinctive physicochemical properties. The possibility of being exfoliated and dispersed in liquid solutions offers a viable...

      Transition metal dichalcogenides (TMDs) are promising 2D materials which are attracting significant interest because of their distinctive physicochemical properties.
      The possibility of being exfoliated and dispersed in liquid solutions offers a viable pathway to scalable production. This personal account focuses on recent advancements in 2D TMD inks produced by liquid-phase exfoliation (LPE) methods and intercalation-based electrochemical exfoliation. In particular, different LPE production strategies, like ultrasonication LPE, high-shear mixing exfoliation, and microfluidization, are introduced alongside a broad range of liquid media employed to provide functionalized TMD inks. The main advantage of TMD inks is its scalability, for practical applications in printed optoelectronics, energy storage, and conversion. Furthermore, the chemical functionalization of TMD inks can solve the poor electrical conductivity attributed to edge defects inherent in TMD inks. Finally, the ultimate orientations for future applications of chemically functionalized TMD devices are forecasted, with a specific focus on wearable and flexible printed electronics.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼