RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      스노우팩-융설 계산을 위한 에너지수지 알고리즘 = An Energy Budget Algorithm for a Snowpack-Snowmelt Calculation

      한글로보기

      https://www.riss.kr/link?id=A101661329

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Understanding snowmelt movement to the watershed is crucial for both climate change and hydrological studies because the snowmelt is a significant component of groundwater and surface runoff in temperature area. In this work, a new energy balance budget algorithm has been developed for melting snow from a snowpack at the Central Sierra Snow Laboratory (CSSL) in California, US. Using two sets of experiments, artificial rain-on-snow experiments and observations of diel variations, carried out in the winter of 2002 and 2003, we investigate how to calculate the amount of snowmelt from the snowpack using radiation energy and air temperature. To address the effect of air temperature, we calculate the integrated daily solar radiation energy input, and the integrated discharge of snowmelt under the snowpack and the energy required to generate such an amount of meltwater. The difference between the two is the excess (or deficit) energy input and we compare this energy to the average daily temperature. The resulting empirical relationship is used to calculate the instantaneous snowmelt rate in the model used by Lee et al. (2008a; 2010), in addition to the net-short radiation. If for a given 10 minute interval, the energy obtained by the melt calculation is negative, then no melt is generated. The input energy from the sun is considered to be used to increase the temperature of the snowpack. Positive energy is used for melting snow for the 10-minute interval. Using this energy budget algorithm, we optimize the intrinsic permeability of the snowpack for the two sets of experiments using one-dimensional water percolation model, which are $52.5{\times}10^{-10}m^2$ and $75{\times}10^{-10}m^2$ for the artificial rain-on-snow experiments and observations of diel variation, respectively.
      번역하기

      Understanding snowmelt movement to the watershed is crucial for both climate change and hydrological studies because the snowmelt is a significant component of groundwater and surface runoff in temperature area. In this work, a new energy balance budg...

      Understanding snowmelt movement to the watershed is crucial for both climate change and hydrological studies because the snowmelt is a significant component of groundwater and surface runoff in temperature area. In this work, a new energy balance budget algorithm has been developed for melting snow from a snowpack at the Central Sierra Snow Laboratory (CSSL) in California, US. Using two sets of experiments, artificial rain-on-snow experiments and observations of diel variations, carried out in the winter of 2002 and 2003, we investigate how to calculate the amount of snowmelt from the snowpack using radiation energy and air temperature. To address the effect of air temperature, we calculate the integrated daily solar radiation energy input, and the integrated discharge of snowmelt under the snowpack and the energy required to generate such an amount of meltwater. The difference between the two is the excess (or deficit) energy input and we compare this energy to the average daily temperature. The resulting empirical relationship is used to calculate the instantaneous snowmelt rate in the model used by Lee et al. (2008a; 2010), in addition to the net-short radiation. If for a given 10 minute interval, the energy obtained by the melt calculation is negative, then no melt is generated. The input energy from the sun is considered to be used to increase the temperature of the snowpack. Positive energy is used for melting snow for the 10-minute interval. Using this energy budget algorithm, we optimize the intrinsic permeability of the snowpack for the two sets of experiments using one-dimensional water percolation model, which are $52.5{\times}10^{-10}m^2$ and $75{\times}10^{-10}m^2$ for the artificial rain-on-snow experiments and observations of diel variation, respectively.

      더보기

      참고문헌 (Reference)

      1 염종민, "적설역에서 나타나는 적외 휘도온도와 반사도 특성" 대한원격탐사학회 25 (25): 193-203, 2009

      2 박영윤, "동토지역의 지하수연구 고찰" 대한지질학회 46 (46): 429-437, 2010

      3 Colbeck, S.C., "The permeability of a melting snow cover" 18 : 904-908, 1982

      4 Christensen, J.H., "The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change" Cambridge University Press 2007

      5 Male, D.H., "Snow surface energy exchange" 17 : 609-627, 1981

      6 Lee, J., "Modeling of solute transport in snow using conservative tracers and artificial rain-on-snow experiments" 44 : 02411-, 2008

      7 Alexander, P., "Modeled surface air temperature response to snow depth variability" 116 : 14105-, 2011

      8 Lee, J., "Isotopic evolution of snowmelt: A new model incorporating mobile and immobile water" 46 : 11512-, 2010

      9 Unnikrishna, P., "Isotope variation in a Sierra Nevad snowpack and their relation to meltwater" 260 : 38-57, 2002

      10 Bales, R.C., "Ion elution through shallow homogeneous snow" 25 : 1869-1877, 1989

      1 염종민, "적설역에서 나타나는 적외 휘도온도와 반사도 특성" 대한원격탐사학회 25 (25): 193-203, 2009

      2 박영윤, "동토지역의 지하수연구 고찰" 대한지질학회 46 (46): 429-437, 2010

      3 Colbeck, S.C., "The permeability of a melting snow cover" 18 : 904-908, 1982

      4 Christensen, J.H., "The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change" Cambridge University Press 2007

      5 Male, D.H., "Snow surface energy exchange" 17 : 609-627, 1981

      6 Lee, J., "Modeling of solute transport in snow using conservative tracers and artificial rain-on-snow experiments" 44 : 02411-, 2008

      7 Alexander, P., "Modeled surface air temperature response to snow depth variability" 116 : 14105-, 2011

      8 Lee, J., "Isotopic evolution of snowmelt: A new model incorporating mobile and immobile water" 46 : 11512-, 2010

      9 Unnikrishna, P., "Isotope variation in a Sierra Nevad snowpack and their relation to meltwater" 260 : 38-57, 2002

      10 Bales, R.C., "Ion elution through shallow homogeneous snow" 25 : 1869-1877, 1989

      11 Singh, P., "Hydrological response of snowpack under rain-on-snow events:a field study" 202 : 1-20, 1997

      12 Genetti, A. JR., "Engineering and Design- Runoff from snowmelt" U.S. Army Corps of Engineers 1998

      13 Colbeck, S.C., "A theory of water percolation in snow" 11 : 369-385, 1972

      14 Feng, X., "A study of solute transport mechanisms using rare earth element tracers and artificial rainstorms on snow" 37 : 1425-1435, 2001

      15 Lee, J., "A study of solute redistribution and transport in seasonal snowpack using natural and artificial tracers" 357 : 243-254, 2008

      16 Kustas, W.P., "A simple energy budget algorithm for the snowmelt runoff model" 30 : 1515-1527, 1994

      17 Wankiewicz, A., "A review of fwater movement in snow, in Modeling of Snow Runoff" 222-252, 1978

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.3 0.3 0.35
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.35 0.36 0.568 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼