RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Effects of Quenching Methods and Aging Processes on the Crushing Properties and Microstructure of Al–Zn–Mg Alloy Thin-Walled Square Extrusions

      한글로보기

      https://www.riss.kr/link?id=A108212342

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, the effects of different (online quenching and offline quenching) quenching methods and aging processes (T6and T73) on the crashworthiness and microstructural evolution of three Al–Zn–Mg alloys (G1–G3) were studied by conductingtensile test and axial compression tests at room temperature, combined with optical metallography, electron back scattereddiffraction, and transmission electron microscopy microstructural observations. The obtained results revealed that thecrushing properties of three different Al–Zn–Mg alloys subjected to different quenching methods and aging processes weresignificantly different. Their crushing energy absorption of are ranked as follows: G1 > G3 > G2. The highest total energyabsorption gap (between T6 and T73) is the G1 alloy, and the lowest one is the G3 alloy. The largest total energy absorptiongap between the two quenching methods is the G3 alloy, and the smallest one is the G1 alloy. The G2 alloy with the largesttotal amount of Zn + Mg has the highest number density of matrix precipitates, the largest precipitate gap (between T6 andT73) and the smallest precipitate gap between the two quenching methods. The G3 alloy with the largest Zn/Mg ratio hasthe smallest number density of matrix precipitates, the minimum precipitation gap (between T6 and T73) and the maximumprecipitation gap between the two quenching methods. The G1 alloy with the lowest Zn/Mg ratio has the smallest size ofgrain boundary precipitates and PFZ width, while their largest values are obtained for the G3 alloy with the maximum Zn/Mg ratio. As a crushing resistant structural material, the crushing properties is improved without reducing the strength. Theratio of Zn/Mg should be controlled within the range of 4.57–6.15, while the total amount of Zn + Mg should be controlledwithin the range of 6.18–7.01.
      번역하기

      In this study, the effects of different (online quenching and offline quenching) quenching methods and aging processes (T6and T73) on the crashworthiness and microstructural evolution of three Al–Zn–Mg alloys (G1–G3) were studied by conductingte...

      In this study, the effects of different (online quenching and offline quenching) quenching methods and aging processes (T6and T73) on the crashworthiness and microstructural evolution of three Al–Zn–Mg alloys (G1–G3) were studied by conductingtensile test and axial compression tests at room temperature, combined with optical metallography, electron back scattereddiffraction, and transmission electron microscopy microstructural observations. The obtained results revealed that thecrushing properties of three different Al–Zn–Mg alloys subjected to different quenching methods and aging processes weresignificantly different. Their crushing energy absorption of are ranked as follows: G1 > G3 > G2. The highest total energyabsorption gap (between T6 and T73) is the G1 alloy, and the lowest one is the G3 alloy. The largest total energy absorptiongap between the two quenching methods is the G3 alloy, and the smallest one is the G1 alloy. The G2 alloy with the largesttotal amount of Zn + Mg has the highest number density of matrix precipitates, the largest precipitate gap (between T6 andT73) and the smallest precipitate gap between the two quenching methods. The G3 alloy with the largest Zn/Mg ratio hasthe smallest number density of matrix precipitates, the minimum precipitation gap (between T6 and T73) and the maximumprecipitation gap between the two quenching methods. The G1 alloy with the lowest Zn/Mg ratio has the smallest size ofgrain boundary precipitates and PFZ width, while their largest values are obtained for the G3 alloy with the maximum Zn/Mg ratio. As a crushing resistant structural material, the crushing properties is improved without reducing the strength. Theratio of Zn/Mg should be controlled within the range of 4.57–6.15, while the total amount of Zn + Mg should be controlledwithin the range of 6.18–7.01.

      더보기

      참고문헌 (Reference)

      1 M. Langseth, 32 : 127-, 1998

      2 A. K. Vasudevan, 35 : 1193-, 1987

      3 G. B. Burger, 35 : 23-, 1995

      4 J. Shin, 698 : 577-, 2017

      5 W. S. Miller, 280 : 37-, 2000

      6 A. Azarniya, 781 : 945-, 2019

      7 J. Zhou, 13 : 401-, 2013

      8 H. Nikkhah, 119 : 412-, 2017

      9 M. Kathiresan, 154 : 106793-, 2020

      10 X. Zhang, 84 : 263-, 2014

      1 M. Langseth, 32 : 127-, 1998

      2 A. K. Vasudevan, 35 : 1193-, 1987

      3 G. B. Burger, 35 : 23-, 1995

      4 J. Shin, 698 : 577-, 2017

      5 W. S. Miller, 280 : 37-, 2000

      6 A. Azarniya, 781 : 945-, 2019

      7 J. Zhou, 13 : 401-, 2013

      8 H. Nikkhah, 119 : 412-, 2017

      9 M. Kathiresan, 154 : 106793-, 2020

      10 X. Zhang, 84 : 263-, 2014

      11 E. Acar, 142 : 227-, 2019

      12 C. P. Kohar, 95 : 17-, 2016

      13 W. Zhang, 146 : 103725-, 2020

      14 Y. Fu, 29 : 217-, 2019

      15 Y. Wang, 792 : 139807-, 2020

      16 H. Guo, 13 : 4971-, 2020

      17 Z. Zhang, 785 : 139394-, 2020

      18 F. Jiang, 854 : 157272-, 2021

      19 G. Sun, 64 : 62-, 2014

      20 L. Li, 742 : 102-, 2018

      21 W. Yang, 85 : 752-, 2015

      22 Y. Wang, 54 : 323-, 1978

      23 P. Bai, 508 : 23-, 2009

      24 J. Wang, 25 : 101376-, 2020

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2009-12-29 학회명변경 한글명 : 대한금속ㆍ재료학회 -> 대한금속·재료학회 KCI등재
      2008-01-01 평가 SCI 등재 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 2.05 0.91 1.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.03 0.86 0.678 0.22
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼