RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      수도권 환경계획을 위한 초미세먼지 농도의 공간 군집특성과 고농도지역 분석 = Spatial clustering of PM2.5 concentration and their characteristics in the Seoul Metropolitan Area for regional environmental planning

      한글로보기

      https://www.riss.kr/link?id=A108049629

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Social interest in the fine particulate matter has increased significantly since the 2010s, and various efforts have been made to reduce it through environmental plans and policies. To support such environmental planning, in this study, spatial cluster characteristics of fine particulate matter (PM2.5) concentrations were analyzed in the metropolitan area to identify high-risk areas spatially, and the correlation with local environmental characteristics was also confirmed. The PM2.5 concentration for the recent 5 years (2016-2020) was targeted, and representative spatial statistical methods Getis–Ord Gi* and Local Moran’s I were applied. As a result of the analysis, the cluster form was different in Getis–Ord Gi* and Local Moran’s I, but they show high similarity in direction, therefore complementary results could be obtained. In the high concentration period, the hotspot concentration of the Getis–Ord Gi* method increased, but in Local Moran's I, the HH region, the high concentration cluster, showed a decreasing trend. Hotspots of the Getis–Ord Gi* technique were prominent in the Pyeongtaek-Hwaseong and Yeoju-Icheon regions, and the HH cluster of Local Moran’s I was located in the southwest, and the LL cluster was located in the northeast. As in the case of the metropolitan area, in the results of Seoul, there was a phenomenon of division between the northeast and southwest regions. The PM2.5 concentration showed a high correlation with the elevation, vegetation greenness and the industrial area ratio. During the high concentration period, the relation with vegetation greenness increased, and the elevation and industrial area ratio increased in the case of the annual average. This suggests that the function of vegetation can be maximized at a high concentration period, and the influence of topography and industrial areas is large on average. This characteristic was also confirmed in the basic statistics for each major cluster. The spatial clustering characteristics of PM2.5 can be considered in the national land and environmental plan at the metropolitan level. In particular, it will be effective to utilize the clustering characteristics based on the annual average concentration, which contributes to domestic emissions.
      번역하기

      Social interest in the fine particulate matter has increased significantly since the 2010s, and various efforts have been made to reduce it through environmental plans and policies. To support such environmental planning, in this study, spatial cluste...

      Social interest in the fine particulate matter has increased significantly since the 2010s, and various efforts have been made to reduce it through environmental plans and policies. To support such environmental planning, in this study, spatial cluster characteristics of fine particulate matter (PM2.5) concentrations were analyzed in the metropolitan area to identify high-risk areas spatially, and the correlation with local environmental characteristics was also confirmed. The PM2.5 concentration for the recent 5 years (2016-2020) was targeted, and representative spatial statistical methods Getis–Ord Gi* and Local Moran’s I were applied. As a result of the analysis, the cluster form was different in Getis–Ord Gi* and Local Moran’s I, but they show high similarity in direction, therefore complementary results could be obtained. In the high concentration period, the hotspot concentration of the Getis–Ord Gi* method increased, but in Local Moran's I, the HH region, the high concentration cluster, showed a decreasing trend. Hotspots of the Getis–Ord Gi* technique were prominent in the Pyeongtaek-Hwaseong and Yeoju-Icheon regions, and the HH cluster of Local Moran’s I was located in the southwest, and the LL cluster was located in the northeast. As in the case of the metropolitan area, in the results of Seoul, there was a phenomenon of division between the northeast and southwest regions. The PM2.5 concentration showed a high correlation with the elevation, vegetation greenness and the industrial area ratio. During the high concentration period, the relation with vegetation greenness increased, and the elevation and industrial area ratio increased in the case of the annual average. This suggests that the function of vegetation can be maximized at a high concentration period, and the influence of topography and industrial areas is large on average. This characteristic was also confirmed in the basic statistics for each major cluster. The spatial clustering characteristics of PM2.5 can be considered in the national land and environmental plan at the metropolitan level. In particular, it will be effective to utilize the clustering characteristics based on the annual average concentration, which contributes to domestic emissions.

      더보기

      참고문헌 (Reference)

      1 고영주 ; 조기환, "핫스팟 분석을 이용한 도시열섬 취약지 특성 분석- 전주시를 대상으로 -" 한국조경학회 48 (48): 67-79, 2020

      2 박순애 ; 신현재, "한국의 초미세먼지(PM2.5)의 영향요인 분석 : 풍향을 고려한 계절성 원인을 중심으로" 한국환경정책학회 25 (25): 227-248, 2017

      3 박득희 ; 임철희, "초미세먼지 농도에 따른 내국인 관광객의 관광활동 패턴 비교: 사회연결망 분석을 활용하여" 한국호텔외식관광경영학회 30 (30): 238-252, 2021

      4 문광주 ; 채혁기 ; 전권호 ; Yang Xiaoyang ; Meng Fan ; 김대곤 ; 박현주 ; 김정수, "중국 초미세먼지 현황 및 정책 동향" 한국대기환경학회 34 (34): 373-392, 2018

      5 여민주 ; 김용표, "우리나라 미세먼지 농도 추이와 고농도 발생 현황" 한국대기환경학회 35 (35): 249-264, 2019

      6 이우균 ; 김세진 ; 임윤진 ; 문주연 ; 송철호 ; 임철희, "수문기상 관측정보를 활용한 안동댐 유역 기후권역 구분 및 분석" 한국기후변화학회 7 (7): 269-282, 2016

      7 김동영 ; 최민애 ; 윤보미, "수도권 미세먼지 집중배출지역 분석" 한국대기환경학회 35 (35): 476-501, 2019

      8 윤은주, "미세먼지(PM10) 추세를 고려한 환경계획 적용 방향 제안" 한국환경영향평가학회 29 (29): 210-218, 2020

      9 석영선 ; 송기환 ; 한효주 ; 이정아, "미세먼지 저감을 위한 그린인프라 계획요소 도출- 텍스트 마이닝을 활용하여 -" 한국조경학회 49 (49): 79-96, 2021

      10 신예은 ; 박진실 ; 김수연 ; 이상우 ; 안경진, "미세먼지 배출원과 취약계층 분포 추정을 통한 미세먼지 저감 녹지 입지 선정 연구 -서울시 성동구를 대상으로-" 한국환경복원기술학회 24 (24): 53-68, 2021

      1 고영주 ; 조기환, "핫스팟 분석을 이용한 도시열섬 취약지 특성 분석- 전주시를 대상으로 -" 한국조경학회 48 (48): 67-79, 2020

      2 박순애 ; 신현재, "한국의 초미세먼지(PM2.5)의 영향요인 분석 : 풍향을 고려한 계절성 원인을 중심으로" 한국환경정책학회 25 (25): 227-248, 2017

      3 박득희 ; 임철희, "초미세먼지 농도에 따른 내국인 관광객의 관광활동 패턴 비교: 사회연결망 분석을 활용하여" 한국호텔외식관광경영학회 30 (30): 238-252, 2021

      4 문광주 ; 채혁기 ; 전권호 ; Yang Xiaoyang ; Meng Fan ; 김대곤 ; 박현주 ; 김정수, "중국 초미세먼지 현황 및 정책 동향" 한국대기환경학회 34 (34): 373-392, 2018

      5 여민주 ; 김용표, "우리나라 미세먼지 농도 추이와 고농도 발생 현황" 한국대기환경학회 35 (35): 249-264, 2019

      6 이우균 ; 김세진 ; 임윤진 ; 문주연 ; 송철호 ; 임철희, "수문기상 관측정보를 활용한 안동댐 유역 기후권역 구분 및 분석" 한국기후변화학회 7 (7): 269-282, 2016

      7 김동영 ; 최민애 ; 윤보미, "수도권 미세먼지 집중배출지역 분석" 한국대기환경학회 35 (35): 476-501, 2019

      8 윤은주, "미세먼지(PM10) 추세를 고려한 환경계획 적용 방향 제안" 한국환경영향평가학회 29 (29): 210-218, 2020

      9 석영선 ; 송기환 ; 한효주 ; 이정아, "미세먼지 저감을 위한 그린인프라 계획요소 도출- 텍스트 마이닝을 활용하여 -" 한국조경학회 49 (49): 79-96, 2021

      10 신예은 ; 박진실 ; 김수연 ; 이상우 ; 안경진, "미세먼지 배출원과 취약계층 분포 추정을 통한 미세먼지 저감 녹지 입지 선정 연구 -서울시 성동구를 대상으로-" 한국환경복원기술학회 24 (24): 53-68, 2021

      11 성선용, "미세먼지 농도의 공간적 현황 및 잠재영향인자를 고려한 환경계획적 대응 방향" 한국환경복원기술학회 23 (23): 89-96, 2020

      12 김은혜 ; 배창한 ; 유철 ; 김병욱 ; 김현철 ; 김순태, "미세먼지 농도 개선을 위한 배출량 저감대책 효과 분석" 한국대기환경학회 34 (34): 469-485, 2018

      13 유재연 ; 권태혁 ; 강인숙 ; 이광수 ; 조창우 ; 김종신 ; 김현호 ; 장욱 ; 박정제 ; 유택수, "기류분석과 지형을 고려한 대기정체와 초미세먼지 (PM2.5) 특성 연구" 한국대기환경학회 35 (35): 701-712, 2019

      14 Ryu YH, "What matters in public perception and awareness of air quality? Quantitative assessment using internet search volume data" 15 (15): 0940-0944, 2020

      15 Lim CH, "Understanding global PM2. 5 concentrations and their drivers in recent decades(1998–2016)" 144 : 106011-, 2020

      16 Zhang Q, "Transboundary health impacts of transported global air pollution and international trade" 543 (543): 705-709, 2017

      17 Getis A, "The analysis of spatial association by use of distance statistics" 24 (24): 189-206, 1992

      18 Yue H, "Spatiotemporal patterns of global air pollution: A multi-scale landscape analysis based on dust and sea-salt removed PM2.5data" 252 : 119887-, 2020

      19 오관석, "SDGs 사업과 한중 간 환경정책 거버넌스에 관한 연구: 중국발 월경성 미세먼지를 중심으로" 동아시아국제정치학회 24 (24): 129-152, 2021

      20 van Donkelaar A, "Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty" 55 (55): 15287-15300, 2021

      21 Ministry of Environment(MOE), "Management Master Plan of Fine Particulate Matter (2020-2024)" 2019

      22 Anselin L, "Local indicators of spatial association – LISA -" 27 (27): 93-115, 1995

      23 Statistics of Korea, "Korean Statistics Information Service"

      24 van Donkelaar A, "Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors" 50 (50): 3762-3772, 2016

      25 Peeters A, "Getis–Ord’s hot-and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data" 111 : 140-150, 2015

      26 World Health Organization(WHO), "Evolution of WHO air quality guidelines:past, present and future" WHO Regional Office for Europe 2017

      27 Park S, "Developing an adaptive pathway to mitigate air pollution risk for vulnerable groups in South Korea" 12 (12): 1790-, 2020

      28 Gyeonggi Research Institute(GRI), "Assessment and Mapping of PM High-risk Region in Seoul Metropolitan Area" 2019

      29 Ministry of Environment(MOE), "Annual Report of Atmospheric Environment 2020" 2020

      30 Kim SW, "Analysis of the effect of street green structure on PM2. 5in thewalk space-Using microclimate simulation-" 24 (24): 61-75, 2021

      31 Apte JS, "Ambient PM2.5 reduces global and regional life expectancy" 5 (5): 546-551, 2018

      32 Park S, "A likely increase in fine particulate matter and premature mortality under future climate change" 13 (13): 143-151, 2020

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-06-09 학회명변경 한글명 : 한국환경복원녹화기술학회 -> 한국환경복원기술학회
      영문명 : The Korea Society For Environmental Restoration And Revegetation Technology -> The Korea Society of Environmental Restoration Technology
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-03-21 학술지명변경 한글명 : 한국환경복원녹화기술학회지 -> 한국환경복원기술학회지
      외국어명 : Journal of the Korea Society for Environmental Restoration and Revegetation Technology -> Journal of the Korea Society of Environmental Restoration Technology
      KCI등재
      2008-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.39
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.41 0.42 0.458 0.23
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼