RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SSCI

      On the Importance of the Traders’ Rules for Pricing Options: Evidence From Intraday Data

      한글로보기

      https://www.riss.kr/link?id=A104993831

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Using intraday data from the KOSPI 200 Index options, we examine the pricing performanceof alternative option pricing models. For comparison, we consider the Black and Scholes(Journal of Political Economy, 81, 1973, 637) model, a simple traders’ rule known as the adhoc Black-Scholes model, the deterministic volatility model, the stochastic volatility model,and the stochastic volatility with jumps model. Contrary to the findings of Jackwerth and Rubinstein(Recovering stochastic processes from option prices), Li and Pearson (A “horse race”among competing option pricing models using S&P 500 Index options), and Kim (Journal ofFutures Markets, 29, 2009, 999) using daily data, we find that the most complicated model,namely the stochastic volatility with jumps model, shows the best performance for pricingthe KOSPI 200 Index options. Overall, our evidence from intraday data indicates that thetraders’ rules do not dominate mathematically more sophisticated models.
      번역하기

      Using intraday data from the KOSPI 200 Index options, we examine the pricing performanceof alternative option pricing models. For comparison, we consider the Black and Scholes(Journal of Political Economy, 81, 1973, 637) model, a simple traders’ rul...

      Using intraday data from the KOSPI 200 Index options, we examine the pricing performanceof alternative option pricing models. For comparison, we consider the Black and Scholes(Journal of Political Economy, 81, 1973, 637) model, a simple traders’ rule known as the adhoc Black-Scholes model, the deterministic volatility model, the stochastic volatility model,and the stochastic volatility with jumps model. Contrary to the findings of Jackwerth and Rubinstein(Recovering stochastic processes from option prices), Li and Pearson (A “horse race”among competing option pricing models using S&P 500 Index options), and Kim (Journal ofFutures Markets, 29, 2009, 999) using daily data, we find that the most complicated model,namely the stochastic volatility with jumps model, shows the best performance for pricingthe KOSPI 200 Index options. Overall, our evidence from intraday data indicates that thetraders’ rules do not dominate mathematically more sophisticated models.

      더보기

      참고문헌 (Reference)

      1 Derman, E., "The volatility smile and its implied tree, Quantitative Strategies Research Notes" Goldman Sachs & Co. 1994

      2 Hull, J., "The pricing of options with stochastic volatilities" 42 : 281-300, 1987

      3 Black, F., "The pricing of options and corporate liabilities" 81 : 637-659, 1973

      4 Kim, S., "The performance of traders’ rules in options market" 29 : 999-1020, 2009

      5 Andersen, T. G., "The distribution of stock return volatility" 61 : 43-76, 2001

      6 Duan, J. C., "The GARCH option pricing model" 5 : 13-32, 1995

      7 Huang, J., "Specification analysis of option pricing models based on timechanged Levy processes" 59 : 1405-1440, 2004

      8 Jackwerth, J. C., "Recovering stochastic processes from option prices, Working Paper" University of Wisconsin at Madison and University of California at Berkely 2001

      9 Dupire, B., "Pricing with a smile" 7 : 18-20, 1994

      10 Bakshi, G. S., "Pricing and hedging long-term options" 94 : 277-318, 2000

      1 Derman, E., "The volatility smile and its implied tree, Quantitative Strategies Research Notes" Goldman Sachs & Co. 1994

      2 Hull, J., "The pricing of options with stochastic volatilities" 42 : 281-300, 1987

      3 Black, F., "The pricing of options and corporate liabilities" 81 : 637-659, 1973

      4 Kim, S., "The performance of traders’ rules in options market" 29 : 999-1020, 2009

      5 Andersen, T. G., "The distribution of stock return volatility" 61 : 43-76, 2001

      6 Duan, J. C., "The GARCH option pricing model" 5 : 13-32, 1995

      7 Huang, J., "Specification analysis of option pricing models based on timechanged Levy processes" 59 : 1405-1440, 2004

      8 Jackwerth, J. C., "Recovering stochastic processes from option prices, Working Paper" University of Wisconsin at Madison and University of California at Berkely 2001

      9 Dupire, B., "Pricing with a smile" 7 : 18-20, 1994

      10 Bakshi, G. S., "Pricing and hedging long-term options" 94 : 277-318, 2000

      11 Wiggins, J. B., "Option values under stochastic volatility: Theory and empirical estimates" 19 : 351-377, 1987

      12 Naik, V., "Option valuation and hedging strategies with jumps in the volatility of asset returns" 48 : 1969-1984, 1993

      13 Merton, R. C., "Option pricing when underlying stock return is discontinuous" 3 : 125-144, 1976

      14 Johnson, H., "Option pricing when the variance is changing" 22 : 143-151, 1987

      15 Scott, L. O., "Option pricing when the variance changes randomly: Theory, estimation, and an application" 22 : 419-438, 1987

      16 Andersen, T. G., "Modeling and forecasting realized volatility" 71 : 529-626, 2003

      17 Manaster, S., "Life in the pits: Competitive market making and inventory control" 9 : 953-975, 1996

      18 Kim, I. J., "Is it important to consider the jump component for pricing and hedging short-term options?" 25 : 989-1009, 2005

      19 Dumas, B., "Implied volatility functions: Empirical tests" 53 : 2059-2106, 1998

      20 Rubinstein, M., "Implied binomial trees" 49 : 771-818, 1994

      21 Andersen, T. G., "Handbook of financial econometrics" North-Holland 67-138, 2010

      22 Naik, V., "General equilibrium pricing of options on the market portfolio with discontinuous returns" 3 : 493-522, 1990

      23 Pong, S., "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models" 28 : 2541-2563, 2004

      24 Bakshi, G. S., "Empirical performance of alternative option pricing models" 52 : 2003-2049, 1997

      25 Kim, I. J., "Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market" 12 : 117-142, 2004

      26 Li, M., "A “horse race” among competing option pricing models using S&P 500 Index options, Working Paper" Georgia Institute of Technology and University of Illinois at Urbana-Champaign 2007

      27 Heston, S. L., "A closed-form solution for options with stochastic volatility with applications to bond and currency options" 6 : 327-343, 1993

      28 Heston, S. L., "A closed-form GARCH option valuation model" 13 : 585-625, 2000

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2009-09-04 학술지명변경 한글명 : 증권학회지 -> Asia-Pacific Journal of Financial Studies KCI등재
      2009-01-01 평가 학술지 분리 (기타) KCI등재
      2006-01-01 평가 SSCI 등재 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.6 0.35 0.51
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.52 0.51 0.716 0
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼