YBCO thin films on metal substrates were prepared by the metal-organic deposition using trifluoroacetates (TFA-MOD). To compensate the loss of Ba element from the precursor films due to the reaction with $CeO_2$ cap layer, we have employed Ba-excessiv...
YBCO thin films on metal substrates were prepared by the metal-organic deposition using trifluoroacetates (TFA-MOD). To compensate the loss of Ba element from the precursor films due to the reaction with $CeO_2$ cap layer, we have employed Ba-excessive precursor solutions of $YBa_{2+x}Cu_{3}O_{7-{\delta}}$ ($0{\le}x{\le}0.1$). The precursor solutions were dip-coated on the metal substrates with $CeO_2$ cap layer, initially heated up to $400^{\circ}C$, and finally fired at the various high temperatures for 2 h in a reduced oxygen atmosphere. With this approach, YBCO films possessing critical temperature over 85 K could be successfully prepared on the metal substrates. The highest $T_{c,zero}$ value of 86 K was obtained from the Ba-excessive YBCO film of x=0.005 in $YBa_{2+x}Cu_{3}O_{7-{\delta}}$ fired at $750^{\circ}C$ for 2 h. However, unexpected $T_c$ suppression even in Ba-excessive YBCO samples requires further identification.