RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      Density Functional Theory for Calculating the OH Stretching Frequency of Water Molecules

      한글로보기

      https://www.riss.kr/link?id=A103027847

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The anharmonic frequency of a local OH stretching mode of a water monomer and dimer was calculated using various levels of density functional theory. The quantum chemical potential energy curves as a function of the OH bond distance were calculated, and they were fitted with the Morse potential function to analytically obtain the fundamental transition frequency. By comparing those values with the frequencies similarly calculated using an ab initio quantum chemical method, the coupled cluster theory including both single and double excitations with the perturbative inclusion of triple excitation in the complete basis limit, the accuracy of various density functional methods in the calculation of anharmonic vibration frequency of water molecules was assessed. For a water monomer, X3LYP and B3LYP methods give the best accuracy, whereas for a water dimer, B972, LCBLYP, ${\omega}B97X$, ${\omega}B97$ methods show the best performance.
      번역하기

      The anharmonic frequency of a local OH stretching mode of a water monomer and dimer was calculated using various levels of density functional theory. The quantum chemical potential energy curves as a function of the OH bond distance were calculated, a...

      The anharmonic frequency of a local OH stretching mode of a water monomer and dimer was calculated using various levels of density functional theory. The quantum chemical potential energy curves as a function of the OH bond distance were calculated, and they were fitted with the Morse potential function to analytically obtain the fundamental transition frequency. By comparing those values with the frequencies similarly calculated using an ab initio quantum chemical method, the coupled cluster theory including both single and double excitations with the perturbative inclusion of triple excitation in the complete basis limit, the accuracy of various density functional methods in the calculation of anharmonic vibration frequency of water molecules was assessed. For a water monomer, X3LYP and B3LYP methods give the best accuracy, whereas for a water dimer, B972, LCBLYP, ${\omega}B97X$, ${\omega}B97$ methods show the best performance.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼