RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      지구성 운동 시 NT-PGC-1α가 흰쥐 골격근 내 미토콘드리아 생합성에 미치는 영향 = Role of NT-PGC-1α on endurance exercise induced mitochondiral biogenesis in rat skeletal muscle

      한글로보기

      https://www.riss.kr/link?id=A99578775

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 연구의 목적은 PGC-1α의 짧은 형태인 NT-PGC-1α가 골격근 내 미토콘드리아 생합성에 어떠한 영향을 미치는가를 알아보는 것이다. 지구성 운동에 따른 골격근 내 PGC-1α, NT-PGC-1α 그리고 미토�...

      본 연구의 목적은 PGC-1α의 짧은 형태인 NT-PGC-1α가 골격근 내 미토콘드리아 생합성에 어떠한 영향을 미치는가를 알아보는 것이다. 지구성 운동에 따른 골격근 내 PGC-1α, NT-PGC-1α 그리고 미토콘드리아 생합성 정도를 알아보기 위해 18마리의 흰쥐를 각각 6마리씩 3그룹(sedentary; Sed, 1 day exercise; 1d Ex, 3 day exercise; 3d Ex)으로 분류한 다음 수영을 실시(6 h/day)하였다. 골격근은 마지막 운동훈련 18시간후 적출하였다. 그 결과 지구성 운동에 따른 골격근 내 PGC-1α의 발현은 1일 운동 후에는 Sed 그룹에 비해 유의하게 증가 하였으나, 3일 운동 후에는 1일 운동에 의해 증가된 정도가 Sed 그룹 수준으로 감소하였다. NT-PGC-1α는 1일 운동 후에는Sed 그룹과 비교해 차이가 없었으나, 3일 운동 후 유의하게 증가하였다. 그리고 지구성 운동에 따른 골격근 내 COXⅠ과NADH-UO는 1일과 3일 트레이닝 후 모두 유의하게 증가하였다. 또한 NT-PGC-1α가 미토콘드리아 생합성에 어떠한 영향을 미치는지 알아보기 위해 C2C12 골격근 세포에 NT-PGC-1α adenovirus를 처치하여 NT-PGC-1α를 과발현 시킨 후 미토콘드리아 효소의 발현정도를 분석한 결과 미토콘드리아 효소인 cytochrome c, COXⅠ, ATP synthase, citrate synthase 모두 유의하게 증가하였다. 이러한 결과를 종합해 볼 때, PGC-1α는 미토콘드리아 생합성 초기에 관여하고, NT-PGC-1α는 PGC-1α에 의해증가된 미토콘드리아 생합성을 계속 유지하거나 약간 더 증가시키는데 중요한 역할을 할 것이다.

      더보기

      다국어 초록 (Multilingual Abstract)

      N-truncated peroxisome proliferator-activated receptor γ coactivator-1α splice variant (NT-PGC-1 α) has similar biological effects to peroxisome proliferator-activated receptor γ coactivator-1α(PGC-1α) in brown adipose t issue. But, t he e ffect...

      N-truncated peroxisome proliferator-activated receptor γ coactivator-1α splice variant (NT-PGC-1 α) has similar biological effects to peroxisome proliferator-activated receptor γ coactivator-1α(PGC-1α) in brown adipose t issue. But, t he e ffect of NT-PGC-1α on mitochondrial biogenesis in skeletal muscles has not been clearly identified. The purpose of this study is to verify that NT-PGC1 induce the mitocondrial biogenesis in skeletal muscle. Eighteen rats were randomly assigned into 3 groups (Sedentary, Sed; 1 day exercise, 1d Ex; 3 day exercise, 3d Ex). Exercise groups were trained by using a 6 h/day swimming program. Muscle samples for PGC-1α, NT-PGC-1α and mitochondrial enzymes were harvested 18 hours after the last bout of exercise. The expression of PGC-1α was increased in the 1d Ex compared with Sed group, but 3d Ex group was not changed compared with Sed group. NT-PGC-1α was increased in the 3d Ex group from the Sed group. The expressions of cytochrome oxidase subunit I (COXⅠ)and NADH-ubiquinone oxidoreductase (NADH-UO) were increased in the 1d Ex and 3d Ex group from the Sed group. Three day overexpressed NT-PGC-1α C2C12 myotubes were harvested for mitochondrial enzymes. The expressions of mitochondrial enzymes, cytochrome c, COXⅠ, ATP synthase and citrate synthase were increased in the NT-PGC-1α overexpressed C2C12 from the Sed group. These findings suggest that PGC-1α protein is responsible for initial increase in mitochondrial biogenesis. While NT-PGC-1α is important for chronic exercise induced increase in mitochondrial proteins.

      더보기

      참고문헌 (Reference)

      1 Goto, M., "cDNA Cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats" 274 (274): 350-353, 2000

      2 Scarpulla, R. C., "Transcriptional paradigms in mammalian mitochonkrial biogenesis and function" 88 (88): 611-638, 2008

      3 Hoppeler, H., "The ultrastructure of normal hman skeletal musscle. A morphometric analysis on untrained men, women and well-trained orienteers" 344 : 217-232, 1973

      4 Vega, R. B., "The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol" 20 (20): 1868-1876, 2000

      5 Fan. M., "Suppression of lmitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha:modulation by p38 MAPK" 18 (18): 278-289, 2004

      6 Olson, B. L., "SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis" 22 (22): 252-264, 2008

      7 Wang, L., "Resistance exercise enhances the molecular signaling of lmitochondrial biogenesis induced by endurance exercise in human skeletal muscle" 111 (111): 1335-1344, 2011

      8 Wu, H., "Regulation of mitochondrial biogenesis in skeletal muscle by CaMK" 296 (296): 349-352, 2002

      9 Cyert, M. S., "Regulation of lnuclear localization during signaling" 276 (276): 20805-20808, 2001

      10 Chang, J. S., "Regulation of NT-PGC-1alpha subcellular localization and function by protein kinase A-dependent modulation of nuclear export by CRM1" 285 (285): 18039-18050, 2010

      1 Goto, M., "cDNA Cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats" 274 (274): 350-353, 2000

      2 Scarpulla, R. C., "Transcriptional paradigms in mammalian mitochonkrial biogenesis and function" 88 (88): 611-638, 2008

      3 Hoppeler, H., "The ultrastructure of normal hman skeletal musscle. A morphometric analysis on untrained men, women and well-trained orienteers" 344 : 217-232, 1973

      4 Vega, R. B., "The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol" 20 (20): 1868-1876, 2000

      5 Fan. M., "Suppression of lmitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha:modulation by p38 MAPK" 18 (18): 278-289, 2004

      6 Olson, B. L., "SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis" 22 (22): 252-264, 2008

      7 Wang, L., "Resistance exercise enhances the molecular signaling of lmitochondrial biogenesis induced by endurance exercise in human skeletal muscle" 111 (111): 1335-1344, 2011

      8 Wu, H., "Regulation of mitochondrial biogenesis in skeletal muscle by CaMK" 296 (296): 349-352, 2002

      9 Cyert, M. S., "Regulation of lnuclear localization during signaling" 276 (276): 20805-20808, 2001

      10 Chang, J. S., "Regulation of NT-PGC-1alpha subcellular localization and function by protein kinase A-dependent modulation of nuclear export by CRM1" 285 (285): 18039-18050, 2010

      11 Holloszy, J. O., "Regulation by exercise of skeletal muscle content of mitochondria and GLUT4" 7 : 5-18, 2008

      12 Lowry, O. H., "Protein measurement with the Folin phenol reagent" 193 (193): 265-275, 1951

      13 Garcia-Roves, P. M., "Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise" 285 (285): 729-736, 2003

      14 Puigserver, P, "Peroxisome proliferator activated receptor-gamma coactivator 1 alpha (PGC-1alpha):transcriptional coactivator and metabolic regulator" 24 (24): 78-90, 2003

      15 Handschin, C., "Peroxisome proliferator acivated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism" 27 : 728-735, 2006

      16 Olesen, J., "PGC-1alpha-mediated adaptations in skeletal muscle" 460 : 153-162, 2010

      17 Leick, L., "PGC-1alpha is not mandatory for exercise and training-induced adaptive gene responses in mouse skeletal muscle" 294 : 463-474, 2008

      18 Wende, A. R., "PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism" 25 : 10684-10694, 2005

      19 김상현, "Normal adaptations to exercise despite protection against oxidative stress" AMER PHYSIOLOGICAL SOC 301 (301): 779-784, 201111

      20 Chang, J. S., "NT-PGC-1α protein is sufficient to link β3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis" 287 (287): 9100-9111, 2012

      21 Ikeda, S., "Muscle type-specific response of PGC-1 alpha and oxidative enzymes during voluntary wheel running in mouse skeletal muscle" 188 (188): 217-223, 2006

      22 Holloszy, J. O., "Mitochondrial citric acid cycle and related enzymes:Adaptive response to exercise" 40 : 1368-1373, 1970

      23 Wu, Z., "Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1" 98 (98): 115-124, 1999

      24 Sano, M., "Intramolecular control of protein stability, subnuclear compartmentalization, and coactivator function of peroxisome proliferator-activated receptor gamma coactivator 1alpha" 252 (252): 25970-25980, 2007

      25 Terada, S., "Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle" 296 : 350-354, 2002

      26 Terada, S, "Effects of acute bouts of urnning and swimming exercise on PGC-1alpha protein expression in rat epitrochlearis and soleus muscle" 286 (286): 208-216, 2004

      27 Ploug, T. B., "Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle" 259 (259): 778-786, 1990

      28 Monsalve, M., "Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1" 6 (6): 307-316, 2000

      29 Puigserver, P., "Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1" 28 (28): 971-982, 2001

      30 Booth, F. W., "Cytochrome c turnover in rat skeletal muscles" 25 (25): 416-419, 1977

      31 Kraft, C., "Control of lmitochondrial biogenesis during myogenesis" 290 : 1119-1127, 2006

      32 Oscai, L.B, "Biochemical adaptations in muscle. II. Response of mitochondrial adenosine triphosphatase, creatine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise" 246 (246): 6968-6972, 1971

      33 Holloszy, J. O., "Biochemical adaptations in muscle. Effects of exercise on mitochondrial O2 uptake and respiratory enzyme activity in skeletal muscle" 242 : 2278-2282, 1967

      34 Kiraly, M. A., "Attenuation of type2 diabetes mellitus in the male Zucker diabetic fatty rat:the effects of stress and non-volitional exercise" 56 : 732-744, 2007

      35 Zhang, Y., "Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1alpha. J. Biol" 284 (284): 32813-32826, 2009

      36 Baar, K., "Adaptations of skeletal muscle to exercise:rapid increase in the transcriptional coactivator PGC-1" 16 (16): 1879-1886, 2002

      37 Mole, P. A., "Adaptation of muscle to exercise. Increase in levels of palmityl CoA synthetase, and in the capacity to oxidize fatty acids" 47 : 461-467, 1971

      38 Puigserver, P., "Activation of PPARgamma coactivator-1 through transcription factor docking" 286 (286): 1368-1371, 1999

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-03-21 학회명변경 한글명 : 한국운동과학회 -> 한국운동생리학회
      영문명 : Korea Exercise Science Academy -> Korean Society of Exercise Physiology
      KCI등재
      2005-03-21 학회명변경 한글명 : 한국운동과학회 -> 한국운동생리학회
      영문명 : Korea Exercise Science Academy -> Korean Society of Exercise Physiology
      KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.76 0.76 0.67
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.62 0.71 0.674 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼