RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      행위 기반 공격 탐지에서 감지 영역을 최대로 하는 감시 노드 선택

      한글로보기

      https://www.riss.kr/link?id=A101739945

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In wireless sensor networks, sensors have capabilities of sensing and wireless communication, computing power and collect data such as sound, movement, vibration. Sensors need to communicate wirelessly to send their sensing data to other sensors or the base station and so they are vulnerable to many attacks like garbage packet injection that cannot be prevented by using traditional cryptographic mechanisms. To defend against such attacks, a behavior-based attack detection is used in which some specialized monitoring nodes overhear the communications of their neighbors(normal nodes) to detect illegitimate behaviors. It is desirable that the total sensing area of normal nodes covered by monitoring nodes is as large as possible. The previous researches have focused on selecting the monitoring nodes so as to maximize the number of normal nodes(node coverage), which does not guarantee that the area sensed by the selected normal nodes is maximized. In this study, we have developed an algorithm for selecting the monitoring nodes needed to cover the maximum sensing area. We also have compared experimentally the covered sensing areas computed by our algorithm and the node coverage algorithm.
      번역하기

      In wireless sensor networks, sensors have capabilities of sensing and wireless communication, computing power and collect data such as sound, movement, vibration. Sensors need to communicate wirelessly to send their sensing data to other sensors or th...

      In wireless sensor networks, sensors have capabilities of sensing and wireless communication, computing power and collect data such as sound, movement, vibration. Sensors need to communicate wirelessly to send their sensing data to other sensors or the base station and so they are vulnerable to many attacks like garbage packet injection that cannot be prevented by using traditional cryptographic mechanisms. To defend against such attacks, a behavior-based attack detection is used in which some specialized monitoring nodes overhear the communications of their neighbors(normal nodes) to detect illegitimate behaviors. It is desirable that the total sensing area of normal nodes covered by monitoring nodes is as large as possible. The previous researches have focused on selecting the monitoring nodes so as to maximize the number of normal nodes(node coverage), which does not guarantee that the area sensed by the selected normal nodes is maximized. In this study, we have developed an algorithm for selecting the monitoring nodes needed to cover the maximum sensing area. We also have compared experimentally the covered sensing areas computed by our algorithm and the node coverage algorithm.

      더보기

      참고문헌 (Reference)

      1 정균락, "무선 센서 네트워크에서 행위 기반 공격 탐지와 보고 문제를 위한 개선된 최단 경로 트리를 사용하는 알고리즘" 한국정보과학회 39 (39): 365-370, 2012

      2 정균락, "무선 센서 네트워크에서 행위 기반 공격 탐지를 위한 감시 노드의연결성과 일반 노드의 커버리지 분석" 한국컴퓨터정보학회 18 (18): 27-34, 2013

      3 V. Gupta, "Wireless Sensor Node Selection Strategies for Effective Surveillance" 924-929, 2015

      4 D.-H. Shin, "Optimal monitoring in multi-channel multi-radio wireless mesh network" 229-238, 2009

      5 A. Stetsko, "Neighbor-based Intrusion Detection for Wireless Sensor Networks" 420-425, 2010

      6 Y. Wang, "Impact of Deployment Point Arrangement on Intrusion Detection in Wireless Sensor Networks" 421-423, 2010

      7 U. Wang, "Hybrid Sensor Deployment for Surveillance and Target Detection in Wireless Sensor Networks" 2011

      8 Y. Liu, "Behavior-based Attack Detection and Reporting in Wireless Sensor Networks" 209-212, 2010

      9 D. Subhadrabandhu, "A framework for misuse detection in adhoc networks-part II" 24 (24): 290-304, 2006

      10 D. Subhadrabandhu, "A framework for misuse detection in adhoc networks-part I" 24 (24): 274-289, 2006

      1 정균락, "무선 센서 네트워크에서 행위 기반 공격 탐지와 보고 문제를 위한 개선된 최단 경로 트리를 사용하는 알고리즘" 한국정보과학회 39 (39): 365-370, 2012

      2 정균락, "무선 센서 네트워크에서 행위 기반 공격 탐지를 위한 감시 노드의연결성과 일반 노드의 커버리지 분석" 한국컴퓨터정보학회 18 (18): 27-34, 2013

      3 V. Gupta, "Wireless Sensor Node Selection Strategies for Effective Surveillance" 924-929, 2015

      4 D.-H. Shin, "Optimal monitoring in multi-channel multi-radio wireless mesh network" 229-238, 2009

      5 A. Stetsko, "Neighbor-based Intrusion Detection for Wireless Sensor Networks" 420-425, 2010

      6 Y. Wang, "Impact of Deployment Point Arrangement on Intrusion Detection in Wireless Sensor Networks" 421-423, 2010

      7 U. Wang, "Hybrid Sensor Deployment for Surveillance and Target Detection in Wireless Sensor Networks" 2011

      8 Y. Liu, "Behavior-based Attack Detection and Reporting in Wireless Sensor Networks" 209-212, 2010

      9 D. Subhadrabandhu, "A framework for misuse detection in adhoc networks-part II" 24 (24): 290-304, 2006

      10 D. Subhadrabandhu, "A framework for misuse detection in adhoc networks-part I" 24 (24): 274-289, 2006

      11 R. Asgarnezhad, "A Survey on Backbone Formation Algorithms for Wireless Sensor Networks"

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.44 0.44 0.44
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.38 0.58 0.15
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼