RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      한정된 응급시설의 최적위치 문제

      한글로보기

      https://www.riss.kr/link?id=A101700046

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposes an EMS algorithm designed to determine the optimal locations for Emergency Medical Service centers that both satisfy the maximum ambulance response time T in case of emergency and cover the largest possible number of residents given a limited number of emergency medical services p in a city divided into different zones. This methodology generally applies integer programming whereby cases are categorized into 1 if the distance between two zones is within the response time and 0 if not and subsequently employs linear programming to obtain the optimal solution. In this paper, where p=1, the algorithm determines a node with maximum coverage. In cases where p≥2, the algorithm selects top 5 nodes with maximum coverage. Based on inclusion-exclusion method, this selection entails repeatedly selecting a node with the maximum coverage when nodes with lower numbers are deleted. Among these 5 selected nodes, the algorithm selects a single node set with the greatest coverage and thereby as the optimal EMS location. The proposed algorithm has proven to accurately and expeditiously obtain the optimal solutions for 12-node network, 21-node network, and Swain's 55-node network.
      번역하기

      This paper proposes an EMS algorithm designed to determine the optimal locations for Emergency Medical Service centers that both satisfy the maximum ambulance response time T in case of emergency and cover the largest possible number of residents give...

      This paper proposes an EMS algorithm designed to determine the optimal locations for Emergency Medical Service centers that both satisfy the maximum ambulance response time T in case of emergency and cover the largest possible number of residents given a limited number of emergency medical services p in a city divided into different zones. This methodology generally applies integer programming whereby cases are categorized into 1 if the distance between two zones is within the response time and 0 if not and subsequently employs linear programming to obtain the optimal solution. In this paper, where p=1, the algorithm determines a node with maximum coverage. In cases where p≥2, the algorithm selects top 5 nodes with maximum coverage. Based on inclusion-exclusion method, this selection entails repeatedly selecting a node with the maximum coverage when nodes with lower numbers are deleted. Among these 5 selected nodes, the algorithm selects a single node set with the greatest coverage and thereby as the optimal EMS location. The proposed algorithm has proven to accurately and expeditiously obtain the optimal solutions for 12-node network, 21-node network, and Swain's 55-node network.

      더보기

      참고문헌 (Reference)

      1 K. J. Devlin, "The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time" Basic Books 2002

      2 R. Church, "The Maximal Covering Location Problem" 32 (32): 101-118, 1974

      3 D. Serra, "Surviving in a Competitive Spatial Market: The Threshold Capture Model" 39 (39): 637-650, 1999

      4 L Carsten, "On the Hardness of Approximating Minimization Problems" 41 (41): 960-981, 1994

      5 L. Dawei, "Model and Algorithms for Emergency Service Facility Location Problem" IEEE Computer Science 15-19, 2009

      6 "List of NP-complete Problems" Wikipedia Foundation Inc

      7 R. J. Vanderbei, "Linear Programming: Foundations and Extensions" Springer Verlag 114 : 2008

      8 R. Z. Farahani, "Facility Location: Concepts, Models, Algorithms and Case Studies" Springer-Verlag Berlin Heidelberg 2009

      9 R. M. Karp, "Complexity of Computer Computations, In Complexity of Computer Computations" Plenum 85-103, 1972

      10 J. E. Storbeck, "A Simple Trade-off Model for Maximal and Multiple Coverage" 20 (20): 220-230, 1988

      1 K. J. Devlin, "The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time" Basic Books 2002

      2 R. Church, "The Maximal Covering Location Problem" 32 (32): 101-118, 1974

      3 D. Serra, "Surviving in a Competitive Spatial Market: The Threshold Capture Model" 39 (39): 637-650, 1999

      4 L Carsten, "On the Hardness of Approximating Minimization Problems" 41 (41): 960-981, 1994

      5 L. Dawei, "Model and Algorithms for Emergency Service Facility Location Problem" IEEE Computer Science 15-19, 2009

      6 "List of NP-complete Problems" Wikipedia Foundation Inc

      7 R. J. Vanderbei, "Linear Programming: Foundations and Extensions" Springer Verlag 114 : 2008

      8 R. Z. Farahani, "Facility Location: Concepts, Models, Algorithms and Case Studies" Springer-Verlag Berlin Heidelberg 2009

      9 R. M. Karp, "Complexity of Computer Computations, In Complexity of Computer Computations" Plenum 85-103, 1972

      10 J. E. Storbeck, "A Simple Trade-off Model for Maximal and Multiple Coverage" 20 (20): 220-230, 1988

      11 M. S. Daskin, "A Hierarchical Objective Set Covering Model for Emergency Medical Service Vehicle Deployment" 15 (15): 137-152, 1981

      12 V. Chvatal, "A Greedy Heuristic for the Set- Covering Problem" 4 (4): 233-235, 1979

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.44 0.44 0.44
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.38 0.58 0.15
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼