RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Forecasting Cryptocurrency Volatility Using a MS-EGARCH Model

      한글로보기

      https://www.riss.kr/link?id=A106915714

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study analyzes the cryptocurrency index (CRIX) using the generalized autoregressive conditional heteroskedasticity (GARCH) and extended GARCH models. Using the daily cryptocurrency index for July 31, 2014, to March 22, 2019, from the CRIX (https://thecrix.de/), we examine the CRIX return volatility forecast performance of three GARCH models. This empirical research investigates the importance of asymmetry in cryptocurrency volatility, which is not accounted for by the standard GARCH model; thus, asymmetric model variations are applied. The results show that the regime-switching model resolves the single-regime model’s problem of elevated forecasts for high-volatility periods. Additionally, we show that the forecasting performance of the Markov-switching exponential GARCH (MS-EGARCH) model is superior to that of other models. This suggests that the MS-EGARCH model outperforms other models in accounting for cryptocurrency index volatility. Hence, the regime-switching model, which applies asymmetry, has greater explanatory power than the standard GARCH model.
      번역하기

      This study analyzes the cryptocurrency index (CRIX) using the generalized autoregressive conditional heteroskedasticity (GARCH) and extended GARCH models. Using the daily cryptocurrency index for July 31, 2014, to March 22, 2019, from the CRIX (https:...

      This study analyzes the cryptocurrency index (CRIX) using the generalized autoregressive conditional heteroskedasticity (GARCH) and extended GARCH models. Using the daily cryptocurrency index for July 31, 2014, to March 22, 2019, from the CRIX (https://thecrix.de/), we examine the CRIX return volatility forecast performance of three GARCH models. This empirical research investigates the importance of asymmetry in cryptocurrency volatility, which is not accounted for by the standard GARCH model; thus, asymmetric model variations are applied. The results show that the regime-switching model resolves the single-regime model’s problem of elevated forecasts for high-volatility periods. Additionally, we show that the forecasting performance of the Markov-switching exponential GARCH (MS-EGARCH) model is superior to that of other models. This suggests that the MS-EGARCH model outperforms other models in accounting for cryptocurrency index volatility. Hence, the regime-switching model, which applies asymmetry, has greater explanatory power than the standard GARCH model.

      더보기

      참고문헌 (Reference)

      1 최서연, "미국 주식과 가상화폐의 비대칭 변동성과 군집 현상" 한국재무관리학회 35 (35): 163-184, 2018

      2 최서연, "가상 화폐의 비선형성에 관한 연구" 한국자료분석학회 20 (20): 791-799, 2018

      3 P. Klein, "Using the generalized Schur form to solve a multivariate linear rational expectations model" 24 : 1405-1423, 2000

      4 G. W. Schwert, "Stock Market volatility ten years after the crash" 65-114, 1990

      5 K. Salhi, "Regime switching model for financial data: Empirical risk analysis" 461 : 148-157, 2016

      6 X. Zhu, "Predicting stock returns: A regime-switching combination approach and economic links" 37 : 4120-4133, 2013

      7 R. C. Merton, "On estimating the expected return on the market: An exploratory investigation" 8 : 323-361, 1980

      8 S. F. Gray, "Modeling the conditional distribution of interest rates as a regime-switching process" 42 (42): 27-62, 1996

      9 P. Chaim, "Is Bitcoin a bubble?" 517 : 222-232, 2019

      10 F. Klaassen, "Improving GARH volatility forecasts with regime-switching GARCH" 27 : 363-394, 2002

      1 최서연, "미국 주식과 가상화폐의 비대칭 변동성과 군집 현상" 한국재무관리학회 35 (35): 163-184, 2018

      2 최서연, "가상 화폐의 비선형성에 관한 연구" 한국자료분석학회 20 (20): 791-799, 2018

      3 P. Klein, "Using the generalized Schur form to solve a multivariate linear rational expectations model" 24 : 1405-1423, 2000

      4 G. W. Schwert, "Stock Market volatility ten years after the crash" 65-114, 1990

      5 K. Salhi, "Regime switching model for financial data: Empirical risk analysis" 461 : 148-157, 2016

      6 X. Zhu, "Predicting stock returns: A regime-switching combination approach and economic links" 37 : 4120-4133, 2013

      7 R. C. Merton, "On estimating the expected return on the market: An exploratory investigation" 8 : 323-361, 1980

      8 S. F. Gray, "Modeling the conditional distribution of interest rates as a regime-switching process" 42 (42): 27-62, 1996

      9 P. Chaim, "Is Bitcoin a bubble?" 517 : 222-232, 2019

      10 F. Klaassen, "Improving GARH volatility forecasts with regime-switching GARCH" 27 : 363-394, 2002

      11 T. Bollerslev, "Generalized autoregressive conditional heteroskedasticity" 31 : 307-327, 1986

      12 최서연, "GARCH 모형을 적용한 가상화폐 수익률의 변동성 분석" 한국재무관리학회 36 (36): 65-82, 2019

      13 Cumhy, "Forecasting volatility and correlations with EGARCH models" 51-63, 1993

      14 J. Marcucci, "Forecasting stock market volatility with regime-switching GARCH models" 9 : 1-53, 2005

      15 K. R. French, "Expected stock returns and volatility" 19 (19): 3-29, 1987

      16 J. B. Gray, "Empirical comparisons of distributional models for stock index returns" 17 (17): 451-459, 1990

      17 D. Bianchi, "Cryptocurrencies as an asset class? An empirical assessment" WBS Finance Group 2017

      18 F. Allen, "Credit risk transfer and contagion" 53 : 89-111, 2006

      19 D. B. Nelson, "Conditional heteroskedasticity in asset returns: A new approach" 59 : 347-370, 1991

      20 G. W. Schwert, "Business cycles, financial crises, and stock volatility" 31 : 83-125, 1989

      21 T. Klein, "Bitcoin is not the new Gold-A comparison of volatility, correlation, and portfolio performance" 59 : 105-116, 2018

      22 C. Eom, "Bitcoin and investor sentiment:Statistical characteristics and predictability" 514 : 511-521, 2019

      23 R. F. Engle, "Autoregressive conditional heteroskedasticity with estimates of the variance of U.K inflation" 5 : 51-63, 1982

      24 T. Anderson, "Answering the skeptics: YES, standard volatility models do provide accurate forecasts" 39 : 885-905, 1998

      25 A. R. Pagan, "Alternative models for conditional stock volatility" 45 : 267-290, 1990

      26 J. D. Hamilton, "A new approach to the economic analysis of nonstationary time series and the business cycle" 64 : 307-333, 1989

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2014-03-25 학술지명변경 외국어명 : Korean Association of Financial Engineering -> Korean Journal of Financial Engineering KCI등재
      2014-03-17 학회명변경 영문명 : The Korean Journal Of Financial Engineering -> Korean Association of Financial Engineering KCI등재
      2014-03-14 학술지명변경 외국어명 : The Korean Journal of Financial Engineering -> Korean Association of Financial Engineering KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2009-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.38 0.38 0.55
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.61 0.66 1.029 0
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼