RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Effect of pillars on the mixing efficiency of a peristaltically-driven Bingham fluid within a closed channel: A LBM simulation

      한글로보기

      https://www.riss.kr/link?id=A106055107

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We have numerically studied the effect of a fluid’s yield stress on the performance of a peristaltic mixer reinforced by cylindrical pillars, typical of those used in microfluidic systems. A multiple-relaxation-time, Lattice Boltzmann code was used ...

      We have numerically studied the effect of a fluid’s yield stress on the performance of a peristaltic mixer reinforced by cylindrical pillars, typical of those used in microfluidic systems. A multiple-relaxation-time, Lattice Boltzmann code was used to investigate the effect of a fluid’s yield stress on mixing efficiency for a viscoplastic fluid obeying the bi-viscous model. A Lagrangian particle-tracking method called “boxcounting” has been utilized for evaluating the mixing performance of the channel through introducing a stirring index parameter. Numerical results indicate that for both Newtonian and Bingham fluids, wave amplitude is the most potent tool for controlling the mixing performance of the mixer. It is shown that while for Newtonian fluids the mixing index is dropped if the channel is equipped with circular pillars, for Bingham fluids pillars can play a slightly positive role in enhancing the mixing efficiency of the mixer, and this is particularly so when the confinement ratio is sufficiently large. A more dramatic increase in the mixing efficiency can be attained when only one of the membranes is vibrating (i.e., the asymmetric case).

      더보기

      참고문헌 (Reference)

      1 Moroney, R.M., "Ultrasonically induced microtransport" 277-282, 1991

      2 Kim, H.J., "Theoretical and Numerical Studies of Chaotic Mixing" Texas A&M University 2008

      3 Succi, S., "The Lattice Boltzmann Equation for Fluid Dynamics and Beyond" Oxford University Press 2001

      4 Kumar, V., "Singlephase fluid flow and mixing in microchannels" 66 : 1329-1373, 2011

      5 Fusi, L., "Retrieving the Bingham model from a bi-viscous model: Some explanatory remarks" 27 : 11-14, 2014

      6 Kim, H.J., "Quantification of chaotic strength and mixing in a micro fluidic system" 17 : 2197-2210, 2007

      7 Yi, M., "Peristaltically induced motion in a closed cavity with two vibrating walls" 14 : 184-197, 2002

      8 Selverov, K.P., "Peristaltically driven channel flows with applications toward micromixing" 13 : 1837-1859, 2001

      9 Khabazi, N.P., "Peristaltic flow of Bingham fluids at large Reynolds numbers: A numerical study" 227 : 30-44, 2016

      10 Meijer, H.E.H., "Passive and active mixing in microfluidic devices" 279 : 201-209, 2009

      1 Moroney, R.M., "Ultrasonically induced microtransport" 277-282, 1991

      2 Kim, H.J., "Theoretical and Numerical Studies of Chaotic Mixing" Texas A&M University 2008

      3 Succi, S., "The Lattice Boltzmann Equation for Fluid Dynamics and Beyond" Oxford University Press 2001

      4 Kumar, V., "Singlephase fluid flow and mixing in microchannels" 66 : 1329-1373, 2011

      5 Fusi, L., "Retrieving the Bingham model from a bi-viscous model: Some explanatory remarks" 27 : 11-14, 2014

      6 Kim, H.J., "Quantification of chaotic strength and mixing in a micro fluidic system" 17 : 2197-2210, 2007

      7 Yi, M., "Peristaltically induced motion in a closed cavity with two vibrating walls" 14 : 184-197, 2002

      8 Selverov, K.P., "Peristaltically driven channel flows with applications toward micromixing" 13 : 1837-1859, 2001

      9 Khabazi, N.P., "Peristaltic flow of Bingham fluids at large Reynolds numbers: A numerical study" 227 : 30-44, 2016

      10 Meijer, H.E.H., "Passive and active mixing in microfluidic devices" 279 : 201-209, 2009

      11 Poursharifi, Z., "On the use of lattice-Boltzmann method for simulating peristaltic flow of viscoplastic fluids in a closed cavity" 243 : 1-15, 2017

      12 Ladd, A.J.C., "Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results" 271 : 311-339, 1994

      13 Ladd, A.J.C., "Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation" 271 : 285-310, 1994

      14 Wang, H., "Numerical investigation of mixing in microchannels with patterned grooves" 13 : 801-808, 2003

      15 Beverly, C.R., "Numerical analysis of threedimensional Bingham plastic flow" 42 : 85-115, 1992

      16 Hessel, V., "Micromixers-a review on passive and active mixing principles" 60 : 2479-2501, 2005

      17 Nguyen, N.T., "Micromixers-a review" 15 : R1-R16, 2005

      18 Capretto, L., "Microfluidics: Topics in Current Chemistry, Vol. 304" Springer 27-68, 2011

      19 Stone, H.A., "Microfluidics: Basic issues, applications, and challenges" 47 : 1250-1254, 2001

      20 Campbell, J., "Microfluidic mixers: From microfabricated to self-assembling devices" 362 : 1069-1086, 2004

      21 Lee, C.Y., "Micro-fluidic mixing: A review" 12 : 3263-3287, 2011

      22 Lu, L.H., "Micro Total Analysis Systems 2001" Springer 28-30, 2001

      23 Ng, C.O., "Lagrangian transport induced by peristaltic pumping in a closed channel" 80 : 056307-, 2009

      24 Mendu, S.S., "Flow of power-law fluids in a cavity driven by the motion of two facing lids - A simulation by lattice Boltzmann method" 175-176 : 10-24, 2012

      25 Barbic, M., "Electromagnetic micromotor for microfluidics applications" 79 : 1399-1401, 2001

      26 Chang, C.C., "Electrokinetic mixing in microfluidic systems" 3 : 501-525, 2007

      27 Aubin, J., "Current methods for characterising mixing and flow in microchannels" 65 : 2065-2093, 2010

      28 Kockmann, N., "Convective micromixers-design and industrial applications" 222 : 807-816, 2008

      29 Stroock, A.D., "Chaotic mixer for microchannels" 295 : 647-651, 2002

      30 Jeong, G.S., "Applications of micromixing technology" 135 : 460-473, 2010

      31 Lo, R.C., "Application of microfluidics in chemical engineering" 1 : 1002-, 2013

      32 Mensing, G.A., "An externally driven magnetic microstirrer" 362 : 1059-1068, 2004

      33 Yu, D., "A unified boundary treatment in lattice Boltzmann method" 2003

      34 Mansur, E.A., "A state-of-the-art review of mixing in microfluidic mixers" 16 : 503-516, 2008

      35 Lu, L.H., "A magnetic microstirrer and array for microfluidic mixing" 11 : 462-469, 2002

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-01-01 평가 SCIE 등재 (등재유지) KCI등재
      2012-01-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (등재후보2차) KCI등재후보
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 SCIE 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.01 0.18 0.77
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.59 0.52 0.327 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼