RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Shaping of the 3D genome by the ATPase machine cohesin

      한글로보기

      https://www.riss.kr/link?id=A107233441

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The spatial organization of the genome is critical for fundamental biological processes, including transcription, genome replication, and segregation. Chromatin is compacted and organized with defined patterns and proper dynamics during the cell cycle...

      The spatial organization of the genome is critical for fundamental biological processes, including transcription, genome replication, and segregation. Chromatin is compacted and organized with defined patterns and proper dynamics during the cell cycle. Aided by direct visualization and indirect genome reconstruction tools, recent discoveries have advanced our understanding of how interphase chromatin is dynamically folded at the molecular level. Here, we review the current understanding of interphase genome organization with a focus on the major regulator of genome structure, the cohesin complex. We further discuss how cohesin harnesses the energy of ATP hydrolysis to shape the genome by extruding chromatin loops.

      더보기

      참고문헌 (Reference)

      1 Kschonsak, M, "kschonsak" 171 : 588-600, 2017

      2 Tedeschi, A., "Wapl is an essential regulator of chromatin structure and chromosome segregation" 501 : 564-568, 2013

      3 Schwarzer, W., "Two independent modes of chromatin organization revealed by cohesin removal" 551 : 51-56, 2017

      4 Hassler, M., "Towards a unified model of SMC complex function" 28 : R1266-R1281, 2018

      5 Dixon, J. R., "Topological domains in mammalian genomes identified by analysis of chromatin interactions" 485 : 376-380, 2012

      6 Schonhoft, J. D., "Timing facilitated site transfer of an enzyme on DNA" 8 : 205-210, 2012

      7 Li, Y, "The structural basis for cohesin-CTCF-anchored loops" 2020

      8 Boyle, S., "The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells" 10 : 211-219, 2001

      9 Zheng, H., "The role of 3D genome organization in development and cell differentiation" 20 : 535-550, 2019

      10 Vian, L., "The energetics and physiological impact of cohesin extrusion" 175 : 292-294, 2018

      1 Kschonsak, M, "kschonsak" 171 : 588-600, 2017

      2 Tedeschi, A., "Wapl is an essential regulator of chromatin structure and chromosome segregation" 501 : 564-568, 2013

      3 Schwarzer, W., "Two independent modes of chromatin organization revealed by cohesin removal" 551 : 51-56, 2017

      4 Hassler, M., "Towards a unified model of SMC complex function" 28 : R1266-R1281, 2018

      5 Dixon, J. R., "Topological domains in mammalian genomes identified by analysis of chromatin interactions" 485 : 376-380, 2012

      6 Schonhoft, J. D., "Timing facilitated site transfer of an enzyme on DNA" 8 : 205-210, 2012

      7 Li, Y, "The structural basis for cohesin-CTCF-anchored loops" 2020

      8 Boyle, S., "The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells" 10 : 211-219, 2001

      9 Zheng, H., "The role of 3D genome organization in development and cell differentiation" 20 : 535-550, 2019

      10 Vian, L., "The energetics and physiological impact of cohesin extrusion" 175 : 292-294, 2018

      11 Haarhuis, J. H. I, "The cohesin release factor WAPL restricts chromatin loop extension" 169 : 693-707, 2017

      12 Hansen, J. C., "The 10-nm chromatin fiber and its relationship to interphase chromosome organization" 46 : 67-76, 2018

      13 Allshire, R. C., "Ten principles of heterochromatin formation and function" 19 : 229-244, 2018

      14 van der Lelij, P., "Synthetic lethality between the cohesin subunits STAG1and STAG2 in diverse cancer contexts" 6 : e26980-, 2017

      15 Cuadrado, A., "Specific contributions of cohesin-SA1 and cohesin-SA2 to TADs and polycomb domains in embryonic stem cells" 27 : 3500-3510, 2019

      16 Kemeny, S., "Spatial organization of chromosome territories in the interphase nucleus of trisomy 21 cells" 127 : 247-259, 2018

      17 Stigler, J., "Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin" 15 : 988-998, 2016

      18 Alipour, E., "Self-organization of domain structures by DNA-loopextruding enzymes" 40 : 11202-11212, 2012

      19 Ganji, M., "Real-time imaging of DNA loop extrusion by condensin" 360 : 102-105, 2018

      20 Davidson, I. F., "Rapid movement and transcriptional re-localization of human cohesin on DNA" 35 : 2671-2685, 2016

      21 Taheri, F., "Random motion of chromatin is influenced by lamin A interconnections" 114 : 2465-2472, 2018

      22 Plys, A. J., "Phase separation of polycomb-repressive complex 1 is governed by a charged disordered region of CBX2" 33 : 799-813, 2019

      23 Wang, Y., "Orientation and repositioning of chromosomes correlate with cell geometry-dependent gene expression" 28 : 1997-2009, 2017

      24 Gibson, B. A, "Organization of chromatin by intrinsic and regulated phase separation" 179 : 470-484, 2019

      25 Fussner, E., "Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres" 13 : 992-996, 2012

      26 Tatavosian, R., "Nuclear condensates of the polycomb protein chromobox 2(CBX2)assemble through phase separation" 294 : 1451-1463, 2019

      27 Blainey, P. C., "Nonspecifically bound proteins spin while diffusing along DNA" 16 : 1224-1229, 2009

      28 Guo, Y. A., "Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers" 9 : 1520-, 2018

      29 Hildebrand, E. M., "Mechanisms and functions of chromosome compartmentalization" 45 : 385-396, 2020

      30 Sedeño Cacciatore, Á., "Loop formation by SMC complexes : turning heads, bending elbows, and fixed anchors" 55 : 11-18, 2019

      31 Gerlich, D., "Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication" 16 : 1571-1578, 2006

      32 Branco, M. R., "Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations" 4 : e138-, 2006

      33 Manuelidis, L., "Individual interphase chromosome domains revealed by in situ hybridization" 71 : 288-293, 1985

      34 Bermudez, V. P., "In vitro loading of human cohesin on DNA by the human Scc2-Scc4 loader complex" 109 : 9366-9371, 2012

      35 Nishino, Y., "Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure" 31 : 1644-1653, 2012

      36 Kim, Y, "Human cohesin compacts DNA by loop extrusion" 2019

      37 Watrin, E., "Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression" 16 : 863-874, 2006

      38 Wang, L., "Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism" 76 : 646-659, 2019

      39 Kimura, H., "Histone modifications for human epigenome analysis" 58 : 439-445, 2013

      40 Belaghzal, H., "Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation" 123 : 56-65, 2017

      41 Falk, M, "Heterochromatin drives compartmentalization of inverted and conventional nuclei" 570 : 395-399, 2019

      42 Vietri Rudan, M., "Genetic tailors : CTCF and cohesin shape the genome during evolution" 31 : 651-660, 2015

      43 Pękowska, A., "Gain of CTCF-anchored chromatin loops marks the exit from naive pluripotency" 7 : 482-495, 2018

      44 Fudenberg, G., "Formation of chromosomal domains by loop extrusion" 15 : 2038-2049, 2016

      45 Rada-Iglesias, A., "Forces driving the three-dimensional folding of eukaryotic genomes" 14 : e8214-, 2018

      46 Morales, C., "Establishing and dissolving cohesion during the vertebrate cell cycle" 52 : 51-57, 2018

      47 Zhao, Z., "Epigenetic modifications of histones in cancer" 20 : 245-, 2019

      48 Oudet, P., "Electron microscopic and biochemical evidence that chromatin structure is a repeating unit" 4 : 281-300, 1975

      49 Brown, M. W., "Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions" 7 : 10607-, 2016

      50 Davidson, I. F., "DNA loop extrusion by human cohesin" 366 : 1338-1345, 2019

      51 Ramdas, N. M., "Cytoskeletal control of nuclear morphology and chromatin organization" 427 : 695-706, 2015

      52 Lieberman-Aiden, E., "Comprehensive mapping of long-range interactions reveals folding principles of the human genome" 326 : 289-293, 2009

      53 Vietri Rudan, M., "Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture" 10 : 1297-1309, 2015

      54 Nishiyama, T., "Cohesion and cohesin-dependent chromatin organization" 58 : 8-14, 2019

      55 Michaelis, C., "Cohesins : chromosomal proteins that prevent premature separation of sister chromatids" 91 : 35-45, 1997

      56 Wendt, K. S., "Cohesin mediates transcriptional insulation by CCCTCbinding factor" 451 : 796-801, 2008

      57 Rhodes, J. D. P., "Cohesin disrupts polycomb-dependent chromosome interactions in embryonic stem cells" 30 : 820-835, 2020

      58 Fatakia, S. N., "Chromosome territory relocation paradigm during DNA damage response : some insights from molecular biology to physics" 8 : 449-460, 2017

      59 Mehta, I. S., "Chromosome territories reposition during DNA damage-repair response" 14 : R135-, 2013

      60 Fritz, A. J., "Chromosome territories and the global regulation of the genome" 58 : 407-426, 2019

      61 Cremer, T., "Chromosome territories" 2 : a003889-, 2010

      62 Maharana, S., "Chromosome intermingling-the physical basis of chromosome organization in differentiated cells" 44 : 5148-5160, 2016

      63 Gruber, S., "Chromosomal cohesin forms a ring" 112 : 765-777, 2003

      64 Falk, M., "Chromatin structure influences the sensitivity of DNA to gamma-radiation" 1783 : 2398-2414, 2008

      65 Nuebler, J., "Chromatin organization by an interplay of loop extrusion and compartmental segregation" 115 : E6697-E6706, 2018

      66 Sanborn, A. L., "Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes" 112 : E6456-E6465, 2015

      67 Takata, H., "Chromatin compaction protects genomic DNA from radiation damage" 8 : e75622-, 2013

      68 Dixon, J. R., "Chromatin architecture reorganization during stem cell differentiation" 518 : 331-336, 2015

      69 Ou, H. D., "ChromEMT : visualizing 3D chromatin structure and compaction in interphase and mitotic cells" 357 : 6349-, 2017

      70 Pugacheva, E. M., "CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention" 117 : 2020-2031, 2020

      71 Ohlsson, R., "CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease" 17 : 520-527, 2001

      72 de Wit, E., "CTCF binding polarity determines chromatin looping" 60 : 676-684, 2015

      73 Hansen, A. S., "CTCF and cohesin regulate chromatin loop stability with distinct dynamics" 6 : e25776-, 2017

      74 Banani, S. F., "Biomolecular condensates : organizers of cellular biochemistry" 18 : 285-298, 2017

      75 Eltsov, M., "Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ" 105 : 19732-19737, 2008

      76 Toh, K. C., "Actin cytoskeleton differentially alters the dynamics of lamin A, HP1α and H2B core histone proteins to remodel chromatin condensation state in living cells" 7 : 1309-1317, 2015

      77 Holzmann, J., "Absolute quantification of cohesin, CTCF and their regulators in human cells" 8 : e46269-, 2019

      78 Arumugam, P., "ATP hydrolysis is required for cohesin’s association with chromosomes" 13 : 1941-1953, 2003

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2009-09-21 학회명변경 한글명 : 대한생화학ㆍ분자생물학회 -> 생화학분자생물학회
      영문명 : Korean Society Of Medical Biochemistry And Molecular Biology -> Korean Society Of Biochemistry And Molecular Biology
      KCI등재
      2008-01-01 평가 SCI 등재 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 3.74 0.23 2.56
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.82 1.45 0.555 0.01
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼