$Li_{1+x}Al_xTi_{2-x}(PO_4)_3$(LATP) is a promising solid electrolyte for all-solid-state Li ion batteries. In this study, LATP is prepared through a sol-gel method using relatively the inexpensive reagents $TiCl_4$. The thermal behavior, structural c...
$Li_{1+x}Al_xTi_{2-x}(PO_4)_3$(LATP) is a promising solid electrolyte for all-solid-state Li ion batteries. In this study, LATP is prepared through a sol-gel method using relatively the inexpensive reagents $TiCl_4$. The thermal behavior, structural characteristics, fractured surface morphology, ion conductivity, and activation energy of the LATP sintered bodies are investigated by TG-DTA, X-ray diffraction, FE-SEM, and by an impedance method. A gelation powder was calcined at $500^{\circ}C$. A single crystalline phase of the $LiTi_2(PO_4)_3$(LTP) system was obtained at a calcination temperature above $650^{\circ}C$. The obtained powder was pelletized and sintered at $900^{\circ}C$ and $1000^{\circ}C$. The LTP sintered at $900{\sim}1000^{\circ}C$ for 6 h had a relatively low apparent density of 75~80%. The LATP(x = 0.3) pellet sintered at $900^{\circ}C$ for 6 h was denser than those sintered under other conditions and showed the highest ion conductivity of $4.50{\times}10^{-5}$ S/cm at room temperature. However, the ion conductivity of LATP (x = 0.3) sintered at $1000^{\circ}C$ decreased to $1.81{\times}10^{-5}$ S/cm, leading to Li volatilization and abnormal grain growth. For LATP sintered at $900^{\circ}C$ for 6 h, x = 0.3 shows the lowest activation energy of 0.42 eV in the temperature range of room temperature to $300^{\circ}C$.