RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      Application of conceptual reactive transport modeling to geologic CO₂ sequestration

      한글로보기

      https://www.riss.kr/link?id=A82547655

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In order to evaluate the capacity and efficiency of a bedrock aquifer as the site of geologic CO₂ sequestration, the authors conducted a conceptual reactive transport modeling. In our simulation model, supercritical CO₂ was injected with water at a high pressure (100 bars) into an aquifer having the volumetric size of 5 km × 5 km × 1 km (depth) under 35℃ for 50 years. It was assumed that mineralogy of the aquifer consists of quartz, plagioclase, K-feldspar, biotite, calcite, and kaolinite. The modeling results show that dissolution of plagioclase and biotite and the successive precipitation of carbonate minerals such as siderite, calcite, and dawsonite are important for CO₂ sequestration. 70.9% of the injected CO₂ (equally, 31 kg CO₂/㎥) is precipitated as carbonate minerals, while 29.1% of CO₂ is remained dissolved in groundwater. The sensitivity analysis under variable contents of plagioclase and biotite in aquifer suggests that the efficiency of mineral trapping is very sensitive to the biotite content. The results of this study indicate that geologic CO₂ sequestration in deep aquifer dominantly occurs by the mineral trapping due to carbonate precipitation, and show that most of the injected CO₂ can be safely sequestered as solid phases in the aquifer for a long time. Even though our modeling was performed under highly simplified conditions, this study shows that reactive transport modeling should be used to evaluate the potential of a deep aquifer to sequester CO₂ with regard to the water-rock interaction and geochemical behavior of CO₂.
      번역하기

      In order to evaluate the capacity and efficiency of a bedrock aquifer as the site of geologic CO₂ sequestration, the authors conducted a conceptual reactive transport modeling. In our simulation model, supercritical CO₂ was injected with water at ...

      In order to evaluate the capacity and efficiency of a bedrock aquifer as the site of geologic CO₂ sequestration, the authors conducted a conceptual reactive transport modeling. In our simulation model, supercritical CO₂ was injected with water at a high pressure (100 bars) into an aquifer having the volumetric size of 5 km × 5 km × 1 km (depth) under 35℃ for 50 years. It was assumed that mineralogy of the aquifer consists of quartz, plagioclase, K-feldspar, biotite, calcite, and kaolinite. The modeling results show that dissolution of plagioclase and biotite and the successive precipitation of carbonate minerals such as siderite, calcite, and dawsonite are important for CO₂ sequestration. 70.9% of the injected CO₂ (equally, 31 kg CO₂/㎥) is precipitated as carbonate minerals, while 29.1% of CO₂ is remained dissolved in groundwater. The sensitivity analysis under variable contents of plagioclase and biotite in aquifer suggests that the efficiency of mineral trapping is very sensitive to the biotite content. The results of this study indicate that geologic CO₂ sequestration in deep aquifer dominantly occurs by the mineral trapping due to carbonate precipitation, and show that most of the injected CO₂ can be safely sequestered as solid phases in the aquifer for a long time. Even though our modeling was performed under highly simplified conditions, this study shows that reactive transport modeling should be used to evaluate the potential of a deep aquifer to sequester CO₂ with regard to the water-rock interaction and geochemical behavior of CO₂.

      더보기

      참고문헌 (Reference)

      1 윤성택, "주입-양수 기법을 활용한 지하수 내 용존 철 제거: 반응성용질이동모델링의 적용" 한국지하수토양환경학회 12 (12): 29-37, 2007

      2 채기탁, "이산화탄소 저감을 위한 지중처분기술의 지구화학적 개념과 연구개발 동향" 대한자원환경지질학회 38 (38): 1-22, 2005

      3 한국지질자원연구원, "남한의 지열자원 분포도" 남한의 지열자원 분포도, 지열 조사보고서 KR-96(C)-17 82-, 1996

      4 Parkhurst, D.L., "User's guide to batch-reaction, one-dimensional transport, and inverse geochemical calculations" U.S. Geological Survey Water-Resources Investigation Reports 99-4259 312-, 1999

      5 White, S.P., "Simulation of reactive transport of injected CO2 on the Colorado Plateau" 217 : 387-405, 2005

      6 Bachu, S., "Sequestration of CO2 in geological media: criteria and approach for site selection in response of climate change" 41 : 953-970, 2000

      7 Gaus, I., "Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea)" 217 : 319-337, 2005

      8 Lagneau, V., "Reactive transport modelling of CO2 sequestration in deep saline aquifers" 60 : 231-247, 2005

      9 Steefel, C.I., "Reactive transport modeling: An essential tool and a new research approach for Earth sciences" 240 : 539-558, 2005

      10 Strazisar, B.R., "Preliminary modeling of the long-term fate of CO2 following injection into deep geological formations" 13 : 1-15, 2006

      1 윤성택, "주입-양수 기법을 활용한 지하수 내 용존 철 제거: 반응성용질이동모델링의 적용" 한국지하수토양환경학회 12 (12): 29-37, 2007

      2 채기탁, "이산화탄소 저감을 위한 지중처분기술의 지구화학적 개념과 연구개발 동향" 대한자원환경지질학회 38 (38): 1-22, 2005

      3 한국지질자원연구원, "남한의 지열자원 분포도" 남한의 지열자원 분포도, 지열 조사보고서 KR-96(C)-17 82-, 1996

      4 Parkhurst, D.L., "User's guide to batch-reaction, one-dimensional transport, and inverse geochemical calculations" U.S. Geological Survey Water-Resources Investigation Reports 99-4259 312-, 1999

      5 White, S.P., "Simulation of reactive transport of injected CO2 on the Colorado Plateau" 217 : 387-405, 2005

      6 Bachu, S., "Sequestration of CO2 in geological media: criteria and approach for site selection in response of climate change" 41 : 953-970, 2000

      7 Gaus, I., "Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea)" 217 : 319-337, 2005

      8 Lagneau, V., "Reactive transport modelling of CO2 sequestration in deep saline aquifers" 60 : 231-247, 2005

      9 Steefel, C.I., "Reactive transport modeling: An essential tool and a new research approach for Earth sciences" 240 : 539-558, 2005

      10 Strazisar, B.R., "Preliminary modeling of the long-term fate of CO2 following injection into deep geological formations" 13 : 1-15, 2006

      11 Zwingmann, N., "Preinjection characterisation and evaluation of CO2 sequestration potential in the Haizume Formation, Niigata Basin" 60 : 249-258, 2005

      12 Domenico, P. A., "Physical and Chemical Hydrogeology (2nd ed.)" John Wiley and Sons Inc. 1998

      13 Gherardi, F., "Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir" 244 : 103-129, 2007

      14 André, L., "Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France)" 48 : 1782-1797, 2007

      15 Xu, T., "Mineral sequestration of carbon dioxide in a sandstone-shale system" 217 : 295-318, 2005

      16 Lasaga, A.C., "Kinetic theory in the earth science" Princeton University Press, Princeton 811-, 1998

      17 Law, D.H.S., "Hydrogeological and numerical analysis of CO2 disposal in deep aquifers in the Alberta sedimentary basin" 37 : 1167-1174, 1996

      18 Chae, G.T., "Hydrogeochemistry of sodium-bicarbonate bedrock groundwater in the Pocheon spa area, South Korea: water-rock interaction and hydrologic mixing" 321 : 326-343, 2006

      19 Ortoleva, P.J., "Geochemical perspective on CO2 sequestration, U.S. Department of Energy Workshop on in Terrestrial Sequestration of CO2-An assessment of Research Needs" 10 : 1998

      20 Emberley, S., "Geochemical monitoring of fluid-rock interaction at CO2 storage at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan" 29 : 1393-1401, 2004

      21 Akimoto, K., "Evaluation of carbon dioxide sequestration in Japan with a mathematical model" 29 : 1537-1549, 2004

      22 Doughty, C., "Estimation plume volume for geological storage of CO2 in saline aquifer"

      23 Wolery, T., "EQ3/6. A software package for geochemical modelling of aqueous system: package overview and installation guide (version 7.0)"

      24 Zerai, B., "Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone" 21 : 223-240, 2006

      25 IPCC, "Climate change 2007: Synthesis Report" IPCC 104-, 2007

      26 Crowley, T.J., "Causes of climate change over the past 1000 years" 289 : 270-277, 2000

      27 Sayers, J., "Assessment of a potential storage site for carbon dioxide: A case study, southeast Queensland" 13 : 123-142, 2006

      28 Hitchen, B., "Aquifer disposal of carbon dioxide, hydrologic and mineral trapping" Geoscience Publishing Sherwood Park, Alberta 1996

      29 Gunter, W.D., "Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2- sequestering reactions by geochemical modelling" 59 : 121-140, 1997

      30 Bachu, S., "Aquifer disposal of CO2-hydrodynamic and mineral trapping" 35 : 269-279, 1995

      31 Holloway, S., "An overview of the underground disposal of carbon dioxide" 38 : 193-198, 1997

      32 Palandri, J., "A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling" U.S. Geological Survey Open File Report 2004-1068 64-, 2004

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-04-29 학술지명변경 외국어명 : 미등록 -> Journal of the Geological Society of Korea KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.94 0.94 0.91
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.87 0.84 1.386 0.19
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼