1. Global Energy Review 2021, International Energy Agency, 2020 1–36, , 2021
2. Energy hubs for the future, Geidl, M., Koeppel, G., Castelli, A. F., Klockl, B., 5, 24–30. https://doi. org/10.1109/MPAE.2007.264850, , 2007
3. Global Energy Outlook 2021, Geden, O., Cowie, A., Seth Villanueva, B. P., Richard Newell, Reisinger, A., Pathways from Paris, , 2021
4. The Carbon impact of Water, Dycian, Y., 1–6, , 2020
5. Renewables 2017WWW Document, IEA, URL https://www. iea. org/publications/renewables2017/, , 2017
6. Hydropower Status Report 2022, IHA, 1–83, , 2022
7. Electricity Market Report 2023, IEA, Paris, , 2023
8. Time to rethink energy research, Shove, E., 6, 118–120. https://doi. org/10.1038/s41560-020-00739-9, , 2021
9. Electricity generation and health, Markandya, A., Wilkinson, P., Galeazzi, C., Anadon, L. D., 370, 979–990. https://doi. org/10.1016/S0140-6736(07)61253-7, , 2007
10. Classification And Regression Trees, Breiman, L. Friedman, J. H. Olshen, R. A. Stone, C. J., https://doi. org/10.1201/9781315139470, , 2017
11. The renaissance of energy innovation, Skea, J., 7, 21–24. https://doi. org/10.1039/C3EE43034K, , 2014
12. Harvesting Energy from CO 2 Emissions, Paz-García, J. M., Hamelers, H. V. M., Schaetzle, O., 1, 31–35. https://doi. org/10.1021/ez4000059, , 2014
13. Smart energy and smart energy systems, Østergaard, P. A., Javed, M. S., Lund, H., Mathiesen, B. V., Energy 137, 556–565. https://doi. org/10.1016/j. energy.2017.05.123, , 2017
14. Impacts, Adaptation, and Vulnerability, Adams, B. M., Roberts, DC, Poloczanska, ES, O., Buscheck, T. A., Bielicki, J. M., Tignor, M., Nelson, E. S., Working Group II Contribution to the IPCC Sixth Assessment Report of the Intergovernmental Panel on Climate Change Pötner, H IPCC Climate. https://doi. org/10.1017/9781009325844. Front, , 2022
15. Fire risk in MTBF evaluation for UPS system, Elia, S., Santantonio, A., Adv. Electr. Electron. Eng. 14, 189–195. https://doi. org/10.15598/aeee. v14i2.1662, , 2016
16. Wind Energy and Role of Effecting Parameters, R. K. Tyagi, 1 3, 73–83, , 2012
17. Summary of the Global Climate Action High-Level, Unfccc, Event at COP 26 1–16, , 2022
18. When are negative emissions negative emissions?, Lala, H., Sawle, Y., Tanzer, S. E., 12, 1210–1218. https://doi. org/10.1039/C8EE03338B, , 2019
19. 2022 Electricity ATB Technologies and Data Overview, NREL, WWW Document URL https://atb. nrel. gov/electricity/2022/index (accessed 11.23.23, , 2022
20. Net Zero Energy Model for Wastewater Treatment Plants, Qandil, M. D., Abbas, A. I., Salem, A. R., Abdelhadi, A. I., Hasan, A., Nourin, F. N., Abousabae, M., Selim, O. M., Espindola, J., Amano, R. S., 143. https://doi. org/10.1115/1.4050082, , 2021
21. World Energy Transitions Outlook 2023: 1.5°C Pathway, IRENA, 2023, Abu Dhabi, , 2023
22. Net-zero emissions targets are vague: three ways to fix, Rogelj, J., Duveiller, E., 591, 365–368. https://doi. org/10.1038/d41586-021-00662-3, , 2021
23. Green Growth and Developing Countries Consultation Draft, OECD, 145, , 2012
24. Failure mode and effect analysis for photovoltaic systems, Colli, A., 50, 804–809. https://doi. org/10.1016/j. rser.2015.05.056, , 2015
25. Fostering Effective Energy Transition 2021 insight report, WEF, W. E. F., 50, , 2021
26. Net-Zero-Energy Model for Sustainable Wastewater Treatment, Lin, M., Kim, K. N., Tehrani, F., Yan, P., Lv, J., Moon, J.-M., Ma, J., Lin, Z., Wang, J., Yu, Q., Xu, S., 51, 1017–1023. https://doi. org/10.1021/acs. est.6b04735, , 2017
27. Quasi-oracle estimation of heterogeneous treatment effects, Hossain, M. J., Fernandez, E., Wager, S., Nie, X., Amin, B. M. R., Biometrika 108, 299–319. https://doi. org/10.1093/biomet/asaa076, , 2021
28. Analyzing operational flexibility of electric power systems, Kasaeian, A., Ulbig, A., Niu, X., Mahian, O., 72, 155–164. https://doi. org/10.1016/j. ijepes.2015.02.028, , 2015
29. The importance of social relations in shaping energy demand, Hashim, H., Middlemiss, L., Hargreaves, T., 5, 195–201. https://doi. org/10.1038/s41560-020-0553-5, , 2020
30. Energy innovation funding and institutions in major economies, Banerjee, S., Meckling, J., Xu, T., Shears, E., 7, 876–885. https://doi. org/10.1038/s41560-022- 01117-3, , 2022
31. The levelized cost of electricity from perovskite photovoltaics, Montecucco, R., Larini, V., De Bastiani, M., Grancini, G., https://doi. org/10.1039/D2EE03136A, , 2023
32. A novel SMART energy system for using biomass energy effectively, Heo, S., Nakagawa, T., Notoji, Y., Kim, J., 116, 492–499. https://doi. org/10.1016/j. renene.2017.09.049, , 2018
33. Demand Side Management in Smart Grid Using Heuristic Optimization, Shun, T. Z., Srinivasan, D., Li, Q., Logenthiran, T., IEEE Trans. Smart Grid 3 1244–1252. https://doi. org/10.1109/TSG.2012.2195686, , 2012
34. Dynamical cognitive network - an extension of fuzzy cognitive map, Bhattacharyya, D., Zhi-Qiang Liu, Yuan Miao, Gandhi, A., Wang, Y., Vudata, S. P., Hasan, M. M. F., IEEE Trans. Fuzzy Syst. 9, 760–770. https://doi. org/10.1109/91.963762, , 2001
35. Modelling lifestyle effects on energy demand and related emissions, Shi, J., Weber, C., Lim, G. J., Molavi, A., Fan, L., 28, 549–566. https://doi. org/10.1016/S0301-4215(00)00040-9, , 2000
36. A review of the state-of-the-art in wind-energy reliability analysis, Alhmoud, L., Wang, B., 81, 1643–1651. https://doi. org/10.1016/j. rser.2017.05.252, , 2018
37. Energy and enjoyment: The value of household electricity consumption, Grunewald, P., Anable, J., in Energy and Behaviour. Elsevier, pp. 263–281. https://doi. org/10.1016/B978-0- 12-818567-4.00011-9, , 2020
38. Pinch analysis approach to carbon-constrained energy sector planning, Ramírez, A., Tan, R. R., Energy 32, 1422–1429. https://doi. org/10.1016/j. energy.2006.09.018, , 2007
39. A dynamic fuzzy cognitive map applied to chemical process supervision, Mendonça, M., Neves, F., 26, 1199–1210. https://doi. org/10.1016/j. engappai.2012.11.007, , 2013
40. A quantitative assessment of energy strategy evolution in China and US, Li, J., Zhou, D., Zhang, H., 15, 886–890. https://doi. org/10.1016/j. rser.2010.09.021, , 2011
41. Fault tree analysis of proton exchange membrane fuel cell system safety, Collong, S., Kouta, R., Breyer, C., 40, 8248–8260. https://doi. org/10.1016/j. ijhydene.2015.04.101, , 2015
42. r cess Integration techniques for optimal design of hybrid power systems, anan, ., assan, K emeš, J. J., ammad a i, . E. an i, Lee, J.-W., 61, 26– 35. https://doi. org/10.1016/j. applthermaleng.2012.12.038, , 2013
43. Assessment of sustainability indicators for renewable energy technologies, Evans, T. J., Evans, A., Strezov, V., Environmental Protection Agency (EPA), Office of Water4601M Office of Ground Water and Drinking Water Distribution System Issue Paper Nitrification Background and Disclaimer, 13, 1082–1088. https://doi. org/10.1016/j. rser.2008.03.008, , 2002
44. Economic analysis of PV/diesel hybrid system with flywheel energy storage, Daniel Raimi, Ramli, M. A. M., Twaha, S., 78, 398–405. https://doi. org/10.1016/j. renene.2015.01.026, , 2015
45. Reliability Assessment of Electric Power Systems Using Monte Carlo Methods, a ise, Billinton, R., d’ ccadia,, Li, W., icid mini, Reliability Assessment of Electric Power Systems Using Monte Carlo Methods. https://doi. org/10.1007/978-1-4899-1346-3, , 2013
46. The mutual dependence of negative emission technologies and energy systems, Peters, G. P., Minx, J., Hilaire, J., Creutzig, F., Socolow, R., 12, 1805–1817. https://doi. org/10.1039/C8EE03682A, , 2019
47. Big-data-driven low-carbon management in Big Data Mining for Climate Change, Wang, C., Zhang, X., Xue, M., Li, P., Zhang, Z., Wang, K., Elsevier, pp. 287–299. https://doi. org/10.1016/B978-0-12-818703-6.00015-5, , 2020
48. Industrial Electrical Engineering and Automation Benchmark Simulation Model, Alex, J., Benedetti, L., Copp, J., Gernaey, K. V, Jeppsson, U., Nopens, I., Pons, M., Rieger, L., Rosen, C., Steyer, J. P., Vanrolleghem, P., Winkler, S., no . 1 ( BSM1 ) 1., , 2008
49. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production, Angelico, B., Yusoff, F. M., Shariff, M., Arruda, L. V. R., Medipally, S. R., 1–13. https://doi. org/10.1155/2015/519513, , 2015
50. Levelized Cost of New Generation Resources in the Annual Energy Outlook 2022, EIA, US Energy Inf. Adm. 1–5, , 2022
51. Optimization and Reliability Evaluation of an Offshore Wind Farm Architecture, Biswas, A., Machmoum, M., Guerin, P., Josse, L., Rhein, P., Dahmani, O., IEEE Trans. Sustain. Energy 8, 542–550. https://doi. org/10.1109/TSTE.2016.2609283, , 2017
52. bp Energy Outlook 2023 edition 2023 explores the key trends and uncertainties, Petroleum, B., 1–53, , 2023
53. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system, Chun Yan Miao, Chee Kheong Siew, Yin, L., Yu, J., 12, 1542. https://doi. org/10.1038/s41467-021-21701-7, , 2021
54. An ANP-SWOT approach for ESCOs industry strategies in Chinese building sectors, Zhuang, T., Liu, G., Zheng, S., Hsu, Y.-F., Xu, P., 93, 90–99. https://doi. org/10.1016/j. rser.2018.03.090, , 2018
55. A multi-level Demand-Side Management algorithm for offgrid multi-source systems, Mahmoudimehr, J., Roy, A., Tran, Q. T., 191, 116536. https://doi. org/10.1016/j. energy.2019.116536, , 2020
56. National context is a key determinant of energy security concerns across Europe, Pohjolainen, P., Fisher, S., Whitmarsh, L., Aviso, K. B., Steg, L., Jokinen, P., Demski, C., Umit, R., Bandyopadhyay, S., Poortinga, W., 3, 882–888. https://doi. org/10.1038/s41560-018-0235-8, , 2018
57. Peer-to-peer electricity trading as an enabler of increased PV and EV ownership, Hutty, T. D., Rothman, R., Parra, D., Pena-Bello, A., 245, 114634. https://doi. org/10.1016/j. enconman.2021.114634, , 2021
58. Reliability benefit of energy storage in wind integrated power system operation, Karki, R., Thapa, S., https://doi. org/10.1049/iet-gtd.2015.0162, , 2015
59. Smart Energy Systems for coherent 100% renewable energy and transport solutions, Mathiesen, B. V., Lund, H., Connolly, D., Wenzel, H., Østergaard, P. A., Möller, B., Nielsen, S., Ridjan, I., Karnøe, P., Sperling, K., Hvelplund, F. K., 145, 139–154. https://doi. org/10.1016/j. apenergy.2015.01.075, , 2015
60. Dynamic load management in a smart home to participate in demand response events, Coakley, D., Fernandes, F., Vale, Z., Ramos, C., Morais, H., Energy Build. 82, 592–606. https://doi. org/10.1016/j. enbuild.2014.07.067, , 2014
61. Energy Transition UN Report - Towards the achivement of SDG 7 Net-zero emissions, Nations, U. I., 157–166, , 2018
62. The United Nations world water development report 2020 : Water and climate change, UNESCO World Water Assessment Programme, UNESCO, , 2020
63. The impact of intelligent cyber-physical systems on the decarbonization of energy, International Renewable Energy Agency, Inderwildi, O., Kraft, M., Wang, X., Zhang, C., 13, 744–771. https://doi. org/10.1039/C9EE01919G, , 2020
64. Author Correction: Matching consumer segments to innovative utility business models, Biesheuvel, P. M., Matthews, Y., Workman, M., Hardy, J., Hall, S., Buisman, C. J. N., Mazur, C., 6, 684–684. https://doi. org/10.1038/s41560-021-00809-6, , 2021
65. The effects of oil price volatility on ethanol, gasoline, and sugar price forecasts, Carpio, L. G. T., 181, 1012–1022. https://doi. org/10.1016/j. energy.2019.05.067, , 2019
66. Best-worst multi-criteria decision-making method: Some properties and a linear model, Rezaei, J., Omega 64, 126–130. https://doi. org/10.1016/j. omega.2015.12.001, , 2016
67. Design of a stand alone system with renewable energy sources using trade off methods, David, M., Gavanidou, E. S., IEEE Trans. Energy Convers. https://doi. org/10.1109/60.124540, , 1992
68. The next phase of the energy transition and its implications for research and policy, Markard, J., 3, 628–633. https://doi. org/10.1038/s41560-018-0171-7, , 2018
69. A multi-objective decision-making approach for sustainable energy investment planning, Delen, D., Evren, R., Cayir Ervural, B., 126, 387–402. https://doi. org/10.1016/j. renene.2018.03.051, , 2018
70. Multi-Residential Demand Response Scheduling With Multi-Class Appliances in Smart Grid, Moon, S., Chisaka, H., 2518–2528. https://doi. org/10.1109/TSG.2016.2614546, , 2018
71. Self-Sustainable Community of Electricity Prosumers in the Emerging Distribution System, Cai, Y., Bernal-Agustín, J. L., Huang, T., Li, Y., Cao, Y., IEEE Trans. Smart Grid 8, 2207–2216. https://doi. org/10.1109/TSG.2016.2518241, , 2017
72. The third route: Using extreme decentralization to create resilient urban water systems, Rabaey, K., Sedlak, D. L., Hiendro, A., Vandekerckhove, T., 185, 116276. https://doi. org/10.1016/j. watres.2020.116276, , 2020
73. Wind energy in Vietnam: Resource assessment, development status and future implications, Nguyen, K. Q., 1405–1413. https://doi. org/10.1016/j. enpol.2006.04.011, , 2007
74. An Evaluation Toolkit to Guide Model Selection and Cohort Definition in Causal Inference, Shimoni, Y., Madlener, R., Sheykhha, S., https://doi. org/https://doi. org/10.48550/arXiv.1906.00442, , 2019
75. Cross-Sectional Dependence and Problems in Inference in Market-Based Accounting Research, Bernard, V. L., 25, 1. https://doi. org/10.2307/2491257, , 1987
76. A feasibility study of a stand-alone hybrid solar-wind-battery system for a remote island, Yang, H., Ma, T., https://doi. org/10.1016/j. apenergy.2014.01.090, , 2014
77. Standalone Renewable Energy and Hydrogen in an Agricultural Context: A Demonstrative Case, Carroquino, J., Dufo-López, R., Sustain. 11. https://doi. org/10.3390/su11040951, , 2019
78. Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants, Kim, Y., Peters, L., Kim, C., Kim, M., Kim, H., 199, 264–280. https://doi. org/10.1016/j. apenergy.2017.04.060, , 2017
79. Economic feasibility of solar power plants based on PV module with levelized cost analysis, Gürtürk, M., Energy 171, 866–878. https://doi. org/10.1016/j. energy.2019.01.090, , 2019
80. A review of energy storage technologies for demand-side management in industrial facilities, Milcarek, R. J., Villalobos, R., Phelan, P., Al-Awami, A. T., Al-Sumaiti, A. S., Elio, J., El Moursi, M. S., 307, 127322. https://doi. org/10.1016/j. jclepro.2021.127322, , 2021
81. E a ua ing inas i mass p er pr duc i n in es men ased n a policy benefit real options model, Wang, L., Wang, X., 73, 751–761. https://doi. org/10.1016/j. energy.2014.06.080, , 2014
82. Potential of demand side integration to maximize use of renewable energy sources in Germany, Styczynski, Z. A., Stötzer, M., Bhatti, A. R., Mustafa, M. W., 146, 344–352. https://doi. org/10.1016/j. apenergy.2015.02.015, , 2015
83. Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland, Khan, M. J., Iqbal, M. T., https://doi. org/10.1016/j. renene.2004.09.001, , 2005
84. An integrated two-level demand-side management game applied to smart energy hubs with storage, Bjørn-Thygesen, F., Sorensen, K., Sobhani, S. O., Schirach, O. M., Sorensen, S., Andersen, R., Energy 206, 118017. https://doi. org/10.1016/j. energy.2020.118017, , 2020
85. Intelligent demand side management for optimal energy scheduling of grid connected microgrids, Kumar, R. S., Raghav, L. P., Raju, D. K., Ifaei, P., Esfahani, I. J., Singh, A. R., 285, 116435. https://doi. org/10.1016/j. apenergy.2021.116435, , 2021
86. Techno-economic optimization analysis of stand-alone renewable energy system for remote areas, Manzoor, M. O., Amjad, W., Munir, A., Majeed, M. A., Asghar, F., Akram, F., 38, 100673. https://doi. org/10.1016/j. seta.2020.100673, , 2020
87. Global scenarios of household access to modern energy services under climate mitigation policy, Poblete-Cazenave, M., Moncur, J. E. T., Liu, C. C. K., van Ruijven, B., 6, 824–833. https://doi. org/10.1038/s41560-021-00871-0, , 2021
88. SAHPPA: A novel power pinch analysis approach for the design of off-grid hybrid energy systems, Khor, C. S., Brown, S., Macchietto, S., Ho, W. S., Klemes, J. J., Dong, S., Clean Technol. Environ. Policy 16, 957–970. https://doi. org/10.1007/s10098-013-0700-9, , 2014
89. Decarbonization, population disruption and resource inventories in the global energy transition, Moradinejad, S., Svobodova, K., 13, 7674. https://doi. org/10.1038/s41467-022-35391-2, , 2022
90. Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change, IPCC, 2023, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Geneva, Switzerland, , 2023
91. Optimum residential load management strategy for real time pricing (RTP) demand response programs, Monteiro, C., Lujano-Rojas, J. M., Connolly, D., Energy Policy 45, 671–679. https://doi. org/10.1016/j. enpol.2012.03.019, , 2012
92. The value of CO2-Bulk energy storage with wind in transmission-constrained electric power systems, Ogland-Hand, J. D., Sioshansi, R., Ayodele, T. R., Akinola, O. A., Saar, M. O., 228, 113548. https://doi. org/10.1016/j. enconman.2020.113548, , 2021
93. An energy management maturity model for multi-site industrial organisations with a global presence, Keane, M. M., Finnerty, N., Sterling, R., 167, 1232–1250. https://doi. org/10.1016/j. jclepro.2017.07.192, , 2017
94. Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system, Dinmohammadi, F., Shabani, M., 212, 84–108. https://doi. org/10.1016/j. apenergy.2017.12.030, , 2018
95. A blockchain consensus mechanism that uses Proof of Solution to optimize energy dispatch and trading, Zhang, N., Xia, Q., Mi, H., Kang, C., Yan, Z., Ping, J., Chen, S., Shen, Z., Liu, X., 7, 495–502. https://doi. org/10.1038/s41560-022-01027-4, , 2022
96. Benefits and costs of a utility-ownership business model for residential rooftop solar photovoltaics, Satchwell, A. J., Barbose, G., 5, 750–758. https://doi. org/10.1038/s41560- 020-0673-y, , 2020
97. Application of fault tree analysis for customer reliability assessment of a distribution power system, Varuttamaseni, A., Kintner-Meyer, M., Abdul Rahman, F., Lee, J. C., Reliab. Eng. Syst. Saf. 111, 76–85. https://doi. org/10.1016/j. ress.2012.10.011, , 2013
98. Sustainable energy technologies for the Global South: challenges and solutions toward achieving SDG 7, Taghartapeh, M. R., Soni, V., Kay Lup, A. N., Son, J., Montañés, R. M., Kindermann, H., Keenan, B., Poya, Y., Morato, M. M., Ertl, T., 2, 570–585. https://doi. org/10.1039/D2VA00247G, , 2023
99. i mass inn a i n anadas eading c ean ec pp r uni y r greenhouse gas reduction and economic prosperity, Stephen, J., Richter, M., Hauer, I., Wood- m, ., Biomass Innov. 1–14, , 2016
100. Market-pull policies to promote renewable energy: A quantitative assessment of tendering implementation, Bento, N., Gianfrate, G., Borello, M., 248, 119209. https://doi. org/10.1016/j. jclepro.2019.119209, , 2020
101. The heterogeneous role of energy policies in the energy transition of Asia–Pacific emerging economies, He, P., Guan, D., Wu, Y., Meng, J., Liang, X., Coffman, D. M., Chen, P., Li, D., 7, 588–596. https://doi. org/10.1038/s41560-022-01029-2, , 2022
102. Characterizing of water-energy-emission nexus of coalfired power industry using entropy weighting method, Wang, C., Xu, M., Dai, C., Cai, Y., 161, 104991. https://doi. org/10.1016/j. resconrec.2020.104991, , 2020
103. Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation, Foo, D. C. Y., Taheriyoun, M., 187. https://doi. org/10.1007/s10661-014-4186-7, , 2015
104. Balancing safety with sustainability: assessing the risk of accidents for modern low-carbon energy systems, Vainorius, A., Sovacool, B. K., Tienda, V., 112, 3952–3965. https://doi. org/10.1016/j. jclepro.2015.07.059, , 2016
105. Techno-economic design and performance analysis of nanogrid systems for households in energy-poor villages, Akinyele, D., 34, 335–357. https://doi. org/10.1016/j. scs.2017.07.004, , 2017
106. User satisfaction-induced demand side load management in residential buildings with user budget constraint, Ogunjuyigbe, A. S. O., Ayodele, T. R., Akinola, O. A., 187, 352–366. https://doi. org/10.1016/j. apenergy.2016.11.071, , 2017
107. Reliability Assessment of Battery-Assisted and Electrolyser-Battery Integrated PV Systems for off-Grid Applications Reliability Assessment of Battery-Assisted and Electrolyser- Battery Integrated PV Systems for Off-Grid Applications * Transforming primary mathematics: understanding classrooms tasks, tools and talk 1–16. https://doi. org/10.4324/9781315667256, Effah, F. B., Quaicoe, J. E., M., Annan, J. K., Askew, , 2018
108. National growth dynamics of wind and solar power compared to the growth required for global climate targets, Tosun, J., Gordon, J. A., Jewell, J., Cherp, A., Vinichenko, V., 6, 742–754. https://doi. org/10.1038/s41560-021-00863-0, , 2021
109. An FMEA-based risk assessment approach for wind turbine systems: A comparative study of onshore and offshore, Funde, N., Shafiee, M., Mokhade, A., Bokde, N. D., 7, 619–642. https://doi. org/10.3390/en7020619, , 2014
110. A Game Theory Approach to Multi-Agent Decentralized Energy Management of Autonomous Polygeneration Microgrids, Papadakis, G., Karavas, C.-S., 10, 1756. https://doi. org/10.3390/en10111756, , 2017
111. Environmental assessment of wastewater discharges at river basin level by means of waste absorption footprint, Gavrilescu, D., Teodosiu, C., Frohlich, K., Favre-Perrod, P., Andersson, G., Sustain. Prod. Consum. 21, 33–46. https://doi. org/10.1016/j. spc.2019.10.006, , 2020
112. From least cost to least risk: Producing climate change mitigation plans that are resilient to multiple risks, Bakirtzis, A. G., Lempert, R., Gambhir, A., Front. Clim. 5. https://doi. org/10.3389/fclim.2023.1149309, , 2023
113. Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island, Saiga Y, Zhao, B., Johnson FH, 113, 1656–1666. https://doi. org/10.1016/j. apenergy.2013.09.015, , 2014
114. Review on reliability improvement and power loss reduction in distribution system via network reconfiguration, Moudrý, V., Sultana, U., Stringer, M., Sovacool, B. K., Lèbre, É., Owen, J. R., Kemp, D., Sultana, B., 66, 297–310. https://doi. org/10.1016/j. rser.2016.08.011, , 2016
115. Life cycle assessment and economic efficiency analysis of integrated management of wastewater treatment plants, Piao, W., Byers, E., Mastrucci, A., Pachauri, S., 113, 325– 337. https://doi. org/10.1016/j. jclepro.2015.11.012, , 2016
116. Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability, Toopshekan, A., Feizizadeh, B., Maghami, A., Ghorbani, N., Blaschke, T., Kasaeian, A., Energy 154, 581–591. https://doi. org/10.1016/j. energy.2017.12.057, , 2018
117. A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques, Andersson, G., Thirunavukkarasu, M., 176, 113192. https://doi. org/10.1016/j. rser.2023.113192, , 2023
118. Analyzing the impact of three-dimensional building structure on CO2 emissions based on random forest regression, Lin, J., Wang, F., Lu, S., Energy 236, 121502. https://doi. org/10.1016/j. energy.2021.121502, , 2021
119. Coordinating the day-ahead operation scheduling for demand response and water desalination plants in smart grid, Elsir, M., 335, 120770. https://doi. org/10.1016/j. apenergy.2023.120770, , 2023
120. Extended-power pinch analysis (EPoPA) for integration of renewable energy systems with battery/hydrogen storages, IRNEA, Yoo, C. K., Ji, C., Abo Keir, M. Y., Janghorban Esfahani, I., Lee, S. C., Renewable Power Generation Costs in 2021, 80, 1– 14. https://doi. org/10.1016/j. renene.2015.01.040, , 2022
121. Optimal design and integration of decentralized electrochemical energy storage with renewables and fossil plants, Zantye, M. S., Karimi, S., Mehri-Tekmeh, J., 15, 4119–4136. https://doi. org/10.1039/D2EE00771A, , 2022
122. Adaptive Negotiation Agent for Facilitating Bi-Directional Energy Trading Between Smart Building and Utility Grid, Wang, Z., Perrels, A., IEEE Trans. Smart Grid 4, 702–710. https://doi. org/10.1109/TSG.2013.2237794, , 2013
123. Photovoltaic/battery system sizing for rural electrification in Bolivia: Considering the suppressed demand effect, Lindbergh, G., Lundblad, A., Benavente, F., Cabrera, S., Zhang, Y., Campana, P. E., 235, 519–528. https://doi. org/10.1016/j. apenergy.2018.10.084, , 2019
124. Economic Analysis of Renewable Energy in the Electricity Marketization Framework: A Case Study in Guangdong, China, Wu, Y., Liu, W., Zhang, X., Front. Energy Res. 8. https://doi. org/10.3389/fenrg.2020.00098, , 2020
125. Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources, Bansal, R. C., Adefarati, T., 236, 1089–1114. https://doi. org/10.1016/j. apenergy.2018.12.050, , 2019
126. A sustainable rural electrification based on a socio-techno-economic-environmentalpolitical microgrid design framework, Kumar, P., Singh, A. R., Rayudu, R., Sah, B., Kumar, A., 15, 4213–4246. https://doi. org/10.1039/D2EE01175A, , 2022
127. Unified pinch approach for targeting of carbon capture and storage (CCS) systems with multiple time periods and regions, Bernal-Agustín, J. L., Tan, R. R., Domínguez-Navarro, J. A., Aso, I., Foo, D. C. Y., Diamante, J. A. R., Ng, D. K. S., 71, 67–74. https://doi. org/10.1016/j. jclepro.2013.11.027, , 2014
128. Multi- Criteria Decision Analysis for user satisfaction-induced demand-side load management for an institutional building, Gangaram Sundar, G., Elavarasan, R. M., Vishnupriyan, J., Leoponraj, S., 170, 1396–1426. https://doi. org/10.1016/j. renene.2021.01.134, , 2021
129. A SWOT framework for analyzing the electricity supply chain using an integrated AHP methodology combined with fuzzy-TOPSIS, Zare, K., Cao, J., 3, 66–80. https://doi. org/10.1016/j. ism.2015.07.001, , 2015
130. Fair P2P energy trading between residential and commercial multi-energy systems enabling integrated demand-side management, Jing, R., Xie, M. N., Arvanitis, K., Wang, F. X., 262, 114551. https://doi. org/10.1016/j. apenergy.2020.114551, , 2020
131. Increasing solar entitlement and decreasing energy vulnerability in a low-income community by adopting the Prosuming Project, Fox, N., 8, 74–83. https://doi. org/10.1038/s41560-022-01169-5, , 2023
132. Iterative sizing of solar-assisted mixed district heating network and local electrical grid integrating demand-side management, Diakonova, M., Ramousse, J., Gronier, T., 238, 121517. https://doi. org/10.1016/j. energy.2021.121517, , 2022
133. Optimization-based identification and quantification of demand-side management potential for distributed energy supply systems, Bardow, A., Lampe, M., Bahl, B., Voll, P., Energy 135, 889– 899. https://doi. org/10.1016/j. energy.2017.06.083, , 2017
134. Quantitative assessment of energy conservation and renewable energy awareness among variant urban communities of Xiamen, China, Ali, G., Xu, S., Xu, L., Cui, S., Yan, N., Hussain, J., Huang, Y., 109, 230–238. https://doi. org/10.1016/j. rser.2019.04.028, , 2019
135. The levelized cost of negative CO2 emissions from thermochemical conversion of biomass coupled with carbon capture and storage, Small, A. A., Colosi, L. M., Cheng, F., 237, 114115. https://doi. org/10.1016/j. enconman.2021.114115, , 2021
136. An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem, Meade, D., Karavani, E., Alford, S. H., Ravid, S., Ng, T. H., Bak, P., Goldschmidt, Y., Shewale, A., 13, 4266. https://doi. org/10.3390/en13164266, , 2020
137. Estrategias de decisión en sistemas dinámicos: aplicando mapas cognitivos difusos aplicación a un ejemplo socio - económico, Bourguet, S., Lavalle, A., Curia, L., 8, 663–680. https://doi. org/10.4301/S1807-17752011000300008, , 2011
138. Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency, Liu, R., Xu, J., Wang, H., Shen, Z., Feng, S., 298, 117157. https://doi. org/10.1016/j. apenergy.2021.117157, , 2021
139. A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions, Abdul-Wahab, S. A., Magazzino, C., Goosen, M. F. A., Schneider, N., Mele, M., 167, 99–115. https://doi. org/10.1016/j. renene.2020.11.050, , 2021
140. Evaluating environmental sustainability with the Waste Absorption Footprint (WAF): An application in the Taihu Lake Basin, China, Chen, L. X., Yuan, Z., Min, Q., Li, W., Li, J., Jiao, W., 49, 39–45. https://doi. org/10.1016/j. ecolind.2014.09.032, , 2015
141. Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource, Ma, T., Lu, L., 182, 178–190. https://doi. org/10.1016/j. enconman.2018.12.059, , 2019
142. Co-optimization of multi284 energy system operation, district heating/cooling network and thermal comfort management for buildings, Ghilardi, L. M. P., Bahrami, L., Morini, M., Martelli, E., Moretti, L., 302, 117480. https://doi. org/10.1016/j. apenergy.2021.117480, , 2021
143. Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage, Dheeraj, A., Ramírez-Rosado, I. J., Lujano, J., Yusta-Loyo, J. M., Dufo-López, R., 88, 4033–4041. https://doi. org/10.1016/j. apenergy.2011.04.019, , 2011
144. PDCA cycle theory based avoidance of nursing staff intravenous drug bacterial infection using degree quantitative evaluation model, Sun, X., Kabene, S. M., Fuller, A. M., Jiang, L., Cheng, S., 26, 104377. https://doi. org/10.1016/j. rinp.2021.104377, , 2021
145. Renewable energy from wastewater - Practical aspects of integrating a wastewater treatment plant into local energy supply concepts, Neugebauer, G., Truger, B., Stoeglehner, G., Kretschmer, F., Bettayeb, M., He, X., Deng, Y., Bansal, R. C., Narodoslawsky, M., Kollmann, R., 155, 119–129. https://doi. org/10.1016/j. jclepro.2016.08.168, , 2017
146. Causal effect of environmental factors, economic indicators and domestic material consumption using frequency domain causality test, Sarkodie, S. A., 736, 139602. https://doi. org/10.1016/j. scitotenv.2020.139602, , 2020
147. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling, Popp, A., Pehl, M., Madlener, R., 2, 939–945. https://doi. org/10.1038/s41560-017- 0032-9, , 2017
148. Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions, Olsson, G., Liu, Y., Vaziri Rad, M. A., Zhang, K., 212, 538–560. https://doi. org/10.1016/j. renene.2023.05.073 Vietnam Electricity, 2021. Annual Report., , 2023
149. Aquaculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: A pilot study on Coconut Island, Hawaii, Qin, G., de Walle, A. Van, Richman, N. H., Aquac. Eng. 32, 365–378. https://doi. org/10.1016/j. aquaeng.2004.09.002, , 2005
150. A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment, u n man ,, Energy 155, 174–189. https://doi. org/10.1016/j. energy.2018.05.006, , 2018
151. Evaluation of Renewable Energy Resources in Turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations, Güleryüz, S., Bompard, E., Büyüközkan, G., Energy 123, 149–163. https://doi. org/10.1016/j. energy.2017.01.137, , 2017
152. Multi-criteria risk evaluation by integrating an analytical network process approach into GIS-based sensitivity and uncertainty analyses, Ghorbanzadeh, O., Gibout, S., Franquet, E., Fitó, J., 9, 127–151. https://doi. org/10.1080/19475705.2017.1413012, , 2018
153. A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading, Majidi, M., Esfetanaj, N. N., Nizami, M. S. H., 261, 114322. https://doi. org/10.1016/j. apenergy.2019.114322, , 2020
154. Canopy temperature depression as an indication of correlative measure of spot blotch resistance and heat stress tolerance in spring wheat, Auger, F., Rosyara, U. R., Bourguet, S., Vromman, D., Dupriez-Robin, F., 90, 103–107. https://doi. org/10.1016/S0019-9958(65)90241-X, , 2008
155. Improving energy efficiency prediction under aberrant measurement using deep compensation networks: A case study of petrochemical process, Luderer, G., Hertwich, E. G., Panjapornpon, C., Humpenöder, F., Arvesen, A., 263, 125837. https://doi. org/10.1016/j. energy.2022.125837, , 2023
156. Optimal Management of Transactive Distribution Electricity Markets With Co-Optimized Bidirectional Energy and Ancillary Service Exchanges, Guo, J., Wu, Y., Chen, Y., Fang, F., Qin, R., Shen, Y., Li, Z., IEEE Trans. Smart Grid 11, 4650–4661. https://doi. org/10.1109/TSG.2020.3003244, , 2020
157. An extended energy hub approach for load flow analysis of highly coupled district energy networks: Illustration with electricity and heating, Laumert, B., Lacarrière, B., Haurant, P., Ayele, G. T., 212, 850–867. https://doi. org/10.1016/j. apenergy.2017.12.090, , 2018
158. Intelligent sensor validation for sustainable influent quality monitoring in wastewater treatment plants using stacked denoising autoencoders, Ba-Alawi, A. H., Heo, S., Yoo, C., Vilela, P., Loy-Benitez, J., 43, 102206. https://doi. org/10.1016/j. jwpe.2021.102206, , 2021
159. Thermo-environ-economic modeling and optimization of an integrated wastewater treatment plant with a combined heat and power generation system, Ifaei P, Moya W, Lee S, Esfahani IJ, Yoo C., 142, 385–401. https://doi. org/10.1016/j. enconman.2017.03.060, , 2017
160. Thermo-environ-economic modeling and optimization of an integrated wastewater treatment plant with a combined heat and power generation system, Yoo, C. K., Moya, W., Janghorban Esfahani, I., Lee, S., 142, 385–401. https://doi. org/10.1016/j. enconman.2017.03.060, , 2017
161. Integrating multicriteria analysis with PDCA cycle for sustainable energy planning in Africa: Application to hybrid mini-grid system in Cameroon, Ale, A., E., Roh, J. W., Mintenbeck, K., Suh, D., Owolabi, A. B., Nsafon, B. E. K., Sustain. Energy Technol. Assessments 37, 100628. https://doi. org/10.1016/j. seta.2020.100628, , 2020
162. Net energy production and emissions mitigation of domestic wastewater treatment system: A comparison of different biogas-sludge use alternatives, Chen, S., Chen, B., https://doi. org/10.1016/j. biortech.2013.06.128, , 2013
163. A scalable and robust approach to demand side management for smart grids with uncertain renewable power generation and bi-directional energy trading, Liu, R.-S., Huang, R., 97, 396–407. https://doi. org/10.1016/j. ijepes.2017.11.023, , 2018
164. Slow pyrolysis as a platform for negative emissions technology: An integration of machine learning models, life cycle assessment, and economic analysis, Colosi, L. M., Luo, H., Cheng, F., 223, 113258. https://doi. org/10.1016/j. enconman.2020.113258, , 2020
165. An adaptive safety-risk mitigation plan at process-level for sustainable production in chemical industries: An integrated fuzzy-HAZOPbest- worst approach, Nguyen, H.-T., Safder, U., Yoo, C., 339, 130780. https://doi. org/10.1016/j. jclepro.2022.130780, , 2022
166. Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant, Nguyen HT, Nhu Nguyen XQ, Yoo C., Safder U, Energy 116570. https://doi. org/10.1016/J. ENERGY.2019.116570, , 2019
167. Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant, Nguyen HT, Nhu Nguyen XQ, Safder U, Yoo C., Energy 191, 116570. https://doi. org/10.1016/j. energy.2019.116570, , 2020
168. Multi-objective optimization and decision making of endoreversible combined cycles with consideration of different heat exchangers by finite time thermodynamics, Ghasemkhani, A., Farahat, S., Naserian, M. M., https://doi. org/10.1016/j. enconman.2018.06.046, , 2018
169. Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response, Amrollahi, M. H., Bathaee, S. M. T., 202, 66–77. https://doi. org/10.1016/j. apenergy.2017.05.116, , 2017
170. Integration of reverse osmosis desalination with hybrid renewable energy sources and battery storage using electricity supply and demand-driven power pinch analysis, Moya, W., Rashidi, J., Li, Q., He, X., Yoo, C. K., 111, 795–809. https://doi. org/10.1016/j. psep.2017.09.009, , 2017
171. An efficient cost-reliability optimization model for optimal siting and sizing of energy storage system in a microgrid in the presence of responsible load management, Nojavan, S., Huh, J.-S., Butu, H. M., Energy 139, 89–97. https://doi. org/10.1016/j. energy.2017.07.148, , 2017
172. Weather data and analysis of hybrid photovoltaic-wind power generation systems adapted to a seawater greenhouse desalination unit designed for arid coastal countries, Mahmoudi, H., Spahis, N., Sablani, S. S., Ouagued, A., Perret, J., Desalination 222, 119–127. https://doi. org/10.1016/j. desal.2007.01.135, , 2008
173. Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches – Case of a radio transmitter station in India, Das, M., Singh, M. A. K., 185, 339–352. https://doi. org/10.1016/j. enconman.2019.01.107, , 2019
174. Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis, Böhm, G., Dehghan Shabani, Z., Shahnazi, R., Energy 169, 1064–1078. https://doi. org/10.1016/j. energy.2018.11.062, , 2019
175. The combined effects of COD/N ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated filter (BAF) systems, Chen, Y., Li, B., Ye, L., Peng, Y., 93, 235–242. https://doi. org/10.1016/j. bej.2014.10.005, , 2015
176. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building, Ogunjuyigbe, A. S. O., Hussain, M. A., Bardeeniz, S., https://doi. org/10.1016/j. apenergy.2016.03.051, , 2016
177. Optimal demand side management scheduling-based bidirectional regulation of energy distribution network for multi-residential demand response with self-produced renewable energy, Nguyen, H.-T., Safder, U., Loy-Benitez, J., Yoo, C., 322, 119425. https://doi. org/10.1016/j. apenergy.2022.119425, , 2022
178. Sustainable design of a solar/wind-powered reverse osmosis system with cooperative demand-side water management: A coordinated sizing approach with a fuzzy decision-making model, Yoo, C., Nguyen, H.-T., Ba-Alawi, A. H., 295, 117624. https://doi. org/10.1016/j. enconman.2023.117624, , 2023
179. Multi-objective optimization of concentrated solar power plants from an energy-water-environment nexus perspective under distinct climatic conditions – Part B: Environ-economic analysis, Zeeshan, M., Ahmad, M., 385, 135689. https://doi. org/10.1016/j. jclepro.2022.135689, , 2023
180. Techno-economic assessment and smart management of an integrated fuel cell-based energy system with absorption chiller for power, hydrogen, heating, and cooling in an electrified railway network, Nguyen, H.-T., Loy-Benitez, J., Safder, U., Dufo-López, R., Woo, T., Yoo, C., Bernal-Agustín, J. L., 233, 121099. https://doi. org/10.1016/j. energy.2021.121099, , 2021