When components made of carbon steel in nuclear, fossil, and industry plants are exposed to flowing fluid, wall thinning caused by FAC (flow accelerated corrosion) can be generated and eventually ruptured at the portion of pressure boundary. A study t...
When components made of carbon steel in nuclear, fossil, and industry plants are exposed to flowing fluid, wall thinning caused by FAC (flow accelerated corrosion) can be generated and eventually ruptured at the portion of pressure boundary. A study to identify the locations generating local wall thinning and to disclose turbulence coefficients related to the local wall thinning was performed. Experiments and numerical analyses for two types of downscaled piping components were performed and the results were compared. Based on the results that the flow behaviors inside piping components can be simulated by numerical analysis, numerical analyses for magnified models to actual size of plants were performed. To disclose the relationship between turbulence coefficients and local thinning rate, numerical analyses were preformed for two components included in the main feedwater systems. The turbulence coefficients based on the numerical analyses were compared with the local wear rate based on the measured data. From the comparison of the results, the vertical flow velocity component (Vr) flowing to the wall after separating in the wall due to the geometrical configuration and colliding with the wall directly at an angle of some degree was analogous to the configuration of local wall thinning.