RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      전기화학적 금속 3D 프린터의 적층 조건 연구를 통한 마이크로 코일 제작

      한글로보기

      https://www.riss.kr/link?id=A107036235

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, we produced a coil of micro-pattern that can be used for electromagnetic wave absorber, heating material, wireless charging, sensor, antenna, etc. by using electrochemical additive manufacturing method. Currently, it contains research c...

      In this study, we produced a coil of micro-pattern that can be used for electromagnetic wave absorber, heating material, wireless charging, sensor, antenna, etc. by using electrochemical additive manufacturing method. Currently, it contains research contents for manufacturing a micro pattern coil having practicality through control of process control variables such as applied voltage, distance between electrode, and nozzle injection. Circulation of the electrolyte through the nozzle injection control can significantly contribute to improving the surface characteristics of the coil because of minimizing voltage fluctuations that may occur during the additive manufacturing process. In addition, by applying the pulse method in the application of voltage, the lamination characteristics of the plated body were improved, which showed that the formation of a fine line width plays an important role in the production of a micro pattern coil. By applying the pulse signal to the voltage application, the additive manufacturing characteristics of the produced product were improved, and it was shown that the formation of a fine line width plays an important role in the production of a micro pattern coil.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Experimental
      • 3. Results and Discussions
      • 4. Conclusions
      • Abstract
      • 1. Introduction
      • 2. Experimental
      • 3. Results and Discussions
      • 4. Conclusions
      • References
      더보기

      참고문헌 (Reference)

      1 Ri-Sheng, L., "The influence of scanning methods on the cracking failure of thin-wall metal parts fabricated by laser direct deposition shaping" 59 : 269-278, 2016

      2 Chen, X., "Tactile microsensor elements prepared from arrayed superelastic carbon microcoils" 87 : 054101-, 2005

      3 Morsali, S., "Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of environmental humidity" 121 : 024903-, 2017

      4 Amato, M., "Modeling, fabrication and characterization of micro-coils as magnetic inductors for wireless power transfer" 111 : 143-148, 2013

      5 Conner, B. P., "Making sense of 3-D printing: Creating a map of additive manufacturing products and services" 1 : 64-76, 2014

      6 Sing, S. L., "Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs" 34 : 369-385, 2016

      7 Niendorf, T., "Highly anisotropic steel processed by selective laser melting" 44 : 794-796, 2013

      8 Rajput, M. S., "Fabrication of nano-sized grain micro features using ultrasonic-assisted jet electrodeposition with pulsed current supply" 228 : 1338-1349, 2014

      9 Williams, K. L., "Electrothermal characterization of tungsten-coated carbon microcoils for micropropulsion systems" 45 : 484-492, 2007

      10 Kang, G. H., "Electromagnetic wave shielding effectiveness based on carbon microcoil-polyurethane composites" 2014

      1 Ri-Sheng, L., "The influence of scanning methods on the cracking failure of thin-wall metal parts fabricated by laser direct deposition shaping" 59 : 269-278, 2016

      2 Chen, X., "Tactile microsensor elements prepared from arrayed superelastic carbon microcoils" 87 : 054101-, 2005

      3 Morsali, S., "Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: Effect of environmental humidity" 121 : 024903-, 2017

      4 Amato, M., "Modeling, fabrication and characterization of micro-coils as magnetic inductors for wireless power transfer" 111 : 143-148, 2013

      5 Conner, B. P., "Making sense of 3-D printing: Creating a map of additive manufacturing products and services" 1 : 64-76, 2014

      6 Sing, S. L., "Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs" 34 : 369-385, 2016

      7 Niendorf, T., "Highly anisotropic steel processed by selective laser melting" 44 : 794-796, 2013

      8 Rajput, M. S., "Fabrication of nano-sized grain micro features using ultrasonic-assisted jet electrodeposition with pulsed current supply" 228 : 1338-1349, 2014

      9 Williams, K. L., "Electrothermal characterization of tungsten-coated carbon microcoils for micropropulsion systems" 45 : 484-492, 2007

      10 Kang, G. H., "Electromagnetic wave shielding effectiveness based on carbon microcoil-polyurethane composites" 2014

      11 Motojima, S., "Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands" 41 : 2653-2689, 2003

      12 Jiang, J., "Electrohydrodynamic direct-writing micropatterns with assisted airflow" 9 : 456-, 2018

      13 Seol, S. K., "Electrodepositionbased 3D printing of metallic microarchitectures with controlled internal structures" 11 : 3896-3902, 2015

      14 Neagu, C. R., "Characterization of a planar microcoil for implantable microsystems" 62 : 599-611, 1997

      15 H. Kodama, "Automatic method for fabricating a three‐dimensional plastic model with photohardening polymer" 52 : 1770-1773, 1981

      16 Herzog, D., "Additive manufacturing of metals" 117 : 371-392, 2016

      17 Huang, S. H., "Additive manufacturing and its societal impact:a literature review" 67 : 1191-1203, 2013

      18 Ngo, T. D., "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges" 143 : 172-196, 2018

      19 Hällgren, S., "Additive Manufacturing and High Speed Machining-Cost comparison of short lead time manufacturing methods" 50 : 384-389, 2016

      20 Wang, X., "3D printing of polymer matrix composites: A review and prospective" 110 : 442-458, 2017

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2022-01-28 학술지명변경 외국어명 : Journal of The Korean Institute of Surface Engineering -> Journal of Surface Science and Engineering KCI등재
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.49 0.49 0.39
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.36 0.34 0.411 0.16
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼