RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Failure Analysis to Derive the Causes of Abnormal Condition of Electric Locomotive Subsystem

      한글로보기

      https://www.riss.kr/link?id=A105405028

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In recent years, the diminishing of operation and maintenance cost using advanced maintenance technology is attracting many companies’ attention. Especially, the heavy machinery industry regards it as a crucial problem since a failure of heavy machinery requires high cost and long downtime. To improve the current maintenance process, the heavy machinery industry tries to develop a methodology to predict failure in advance and to find its causes using usage data. A better analysis of failure causes requires more data so that various kinds of sensor are attached to machines and abundant amount of product usage data is collected through the sensor network. However, the systemic analysis of the collected product usage data is still in its infant stage. Many previous works have focused on failure occurrence as statistical data for reliability analysis. There have been less works to apply product usage data into root cause analysis of product failure. The product usage data collected while failures occur should be considered failure cause analysis. To do this, this study proposes a methodology to apply product usage data into failure cause analysis. The proposed methodology in this study is composed of several steps to transform product usage into failure causes. Various statistical analysis combined with product usage data such as multinomial logistic regression, T-test, and so on are used for the root cause analysis. The proposed methodology is applied to field data coming from operated locomotive and the analysis result shows its effectiveness.
      번역하기

      In recent years, the diminishing of operation and maintenance cost using advanced maintenance technology is attracting many companies’ attention. Especially, the heavy machinery industry regards it as a crucial problem since a failure of heavy machi...

      In recent years, the diminishing of operation and maintenance cost using advanced maintenance technology is attracting many companies’ attention. Especially, the heavy machinery industry regards it as a crucial problem since a failure of heavy machinery requires high cost and long downtime. To improve the current maintenance process, the heavy machinery industry tries to develop a methodology to predict failure in advance and to find its causes using usage data. A better analysis of failure causes requires more data so that various kinds of sensor are attached to machines and abundant amount of product usage data is collected through the sensor network. However, the systemic analysis of the collected product usage data is still in its infant stage. Many previous works have focused on failure occurrence as statistical data for reliability analysis. There have been less works to apply product usage data into root cause analysis of product failure. The product usage data collected while failures occur should be considered failure cause analysis. To do this, this study proposes a methodology to apply product usage data into failure cause analysis. The proposed methodology in this study is composed of several steps to transform product usage into failure causes. Various statistical analysis combined with product usage data such as multinomial logistic regression, T-test, and so on are used for the root cause analysis. The proposed methodology is applied to field data coming from operated locomotive and the analysis result shows its effectiveness.

      더보기

      목차 (Table of Contents)

      • 1. 서 론
      • 2. 이상 상태 요인 분석에 대한 기존 연구
      • 3. 이상 상태 주요요인 분석 절차
      • 4. 결 론
      • 1. 서 론
      • 2. 이상 상태 요인 분석에 대한 기존 연구
      • 3. 이상 상태 주요요인 분석 절차
      • 4. 결 론
      더보기

      참고문헌 (Reference)

      1 김호종, "적외선 열화상을 이용한 베어링의 실시간 고장 모니터링 검출기법에 관한 연구" 한국비파괴검사학회 33 (33): 330-335, 2013

      2 정훈, "기계적 모터 고장진단을 위한 머신러닝 기법" 한국산업경영시스템학회 40 (40): 57-64, 2017

      3 Bonnett, A.H., "Root cause AC motor failure analysis with a focus on shaft failures" 36 (36): 1435-1448, 2000

      4 Lee, C.Y., "Representation of Switching Circuits by Binary-Decision Programs" 38 (38): 985-999, 1959

      5 Kim, I.S., "Recent Failure Types of Air Equipment and Changes in Prevention maintenance Policy" 339-344, 2015

      6 정원, "QFD와 고장메커니즘 분석에 의한 농기계부품의 신뢰성평가" 한국산업경영시스템학회 33 (33): 209-217, 2010

      7 조상제, "LNG FPSO 압축기 고장시간 예측 방안에 관한 연구" 한국산업경영시스템학회 37 (37): 12-23, 2014

      8 Efendic, H., "Iterative Multilayer Fault Diagnosis Approach for Complex System" 138-143, 2005

      9 Bryant, R., "Graph-based algorithms for boolean function manipulation" 35 (35): 677-691, 1986

      10 Lsermann, R., "Fault-Diagnosis Systems : An Introduction from Fault Detection to Fault Tolerance" Springer Science & Business Media 2006

      1 김호종, "적외선 열화상을 이용한 베어링의 실시간 고장 모니터링 검출기법에 관한 연구" 한국비파괴검사학회 33 (33): 330-335, 2013

      2 정훈, "기계적 모터 고장진단을 위한 머신러닝 기법" 한국산업경영시스템학회 40 (40): 57-64, 2017

      3 Bonnett, A.H., "Root cause AC motor failure analysis with a focus on shaft failures" 36 (36): 1435-1448, 2000

      4 Lee, C.Y., "Representation of Switching Circuits by Binary-Decision Programs" 38 (38): 985-999, 1959

      5 Kim, I.S., "Recent Failure Types of Air Equipment and Changes in Prevention maintenance Policy" 339-344, 2015

      6 정원, "QFD와 고장메커니즘 분석에 의한 농기계부품의 신뢰성평가" 한국산업경영시스템학회 33 (33): 209-217, 2010

      7 조상제, "LNG FPSO 압축기 고장시간 예측 방안에 관한 연구" 한국산업경영시스템학회 37 (37): 12-23, 2014

      8 Efendic, H., "Iterative Multilayer Fault Diagnosis Approach for Complex System" 138-143, 2005

      9 Bryant, R., "Graph-based algorithms for boolean function manipulation" 35 (35): 677-691, 1986

      10 Lsermann, R., "Fault-Diagnosis Systems : An Introduction from Fault Detection to Fault Tolerance" Springer Science & Business Media 2006

      11 Shcherbovskykh, S., "Failure cause analysis of pressure vessel protective fittings with load-sharing effect between valves" 385-387, 2015

      12 Mun, H.S., "Failure Mode Analysis of Variable Gauge Bogie of Scale model by using Fail Tree Analysis" 334-344, 2014

      13 He, Z., "Big data oriented root cause identification approach based on PCA and SVM for product infant failure" 1-5, 2016

      14 조병호, "BDD를 이용한 사고수목 정상사상확률 계산" 한국정보통신학회 20 (20): 654-662, 2016

      15 Park, B.N., "A Study on FMEA for Railway Vehicle" 162-168, 2009

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-11-29 학회명변경 영문명 : 미등록 -> KOREAN SOCIETY OF INDUSTRIAL AND SYSTEMS ENGINEERING KCI등재
      2021-11-25 학술지명변경 외국어명 : Journal of Society of Korea Industrial and Systems Engineering -> Journal of Korean Society of Industrial and Systems Engineering KCI등재
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-12-04 학술지명변경 한글명 : 산업경영시스템학회지 -> 한국산업경영시스템학회지
      외국어명 : Journal of the Society of Korea Industrial and Systems Engineering -> Journal of Society of Korea Industrial and Systems Engineering
      KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.34 0.34 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.28 0.28 0.37 0.16
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼