RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      LANDSAT TM 영상을 이용한 호소의 클로로필 α 및 투명도 해석에 관한 연구 = The Interpretation Of Chlorophyll α And Transparency In A Lake Using LANDSAT TM Imagery

      한글로보기

      https://www.riss.kr/link?id=A82398641

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      In this paper, remote sensing is used to estimate trophic state which is primary concern in a lake. In using remote sensing, this study estimated trophic state not with conventional method such as regression equations but with classification methods. As europhication is caused by the extraordinary proliferation of the algae, chlorophyll α and transparency are applied to remote sensing data. Maximum Likelihood Classification and Minimum Distance Classification which are kinds of classification methods enabled trophic state to be confirmed in a lake. These are obtained as the result of applying remote sensing to classify trophic state in a lake. First, when we evaluate tropic state in a large area of water body, the application of remote sensing data can obtain more than 70% accuracies just in using basic classification methods. Second, in the aspect of classification, the accuracy of Minimum Distance Classification is usually better than that of Maximum Likelihood Classification. This result is caused that samples have normal distribution, but their numbers are a few to apply statistical method. Therefore, classification method is required such as artificial neural networks which are not influenced by statistical distribution. Third, this study enables the trophic state of water body to be analyzed and evaluated rapidly, periodically and visibly. Also, this study is good for forming proper countermeasure accompanying with trophic state progress extent in a lake and is useful for basic-data.
      번역하기

      In this paper, remote sensing is used to estimate trophic state which is primary concern in a lake. In using remote sensing, this study estimated trophic state not with conventional method such as regression equations but with classification methods. ...

      In this paper, remote sensing is used to estimate trophic state which is primary concern in a lake. In using remote sensing, this study estimated trophic state not with conventional method such as regression equations but with classification methods. As europhication is caused by the extraordinary proliferation of the algae, chlorophyll α and transparency are applied to remote sensing data. Maximum Likelihood Classification and Minimum Distance Classification which are kinds of classification methods enabled trophic state to be confirmed in a lake. These are obtained as the result of applying remote sensing to classify trophic state in a lake. First, when we evaluate tropic state in a large area of water body, the application of remote sensing data can obtain more than 70% accuracies just in using basic classification methods. Second, in the aspect of classification, the accuracy of Minimum Distance Classification is usually better than that of Maximum Likelihood Classification. This result is caused that samples have normal distribution, but their numbers are a few to apply statistical method. Therefore, classification method is required such as artificial neural networks which are not influenced by statistical distribution. Third, this study enables the trophic state of water body to be analyzed and evaluated rapidly, periodically and visibly. Also, this study is good for forming proper countermeasure accompanying with trophic state progress extent in a lake and is useful for basic-data.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼