RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Unsteady‑State Horizontal Solidification of an Al–Si–Cu–Fe Alloy: Relationship Between Thermal Parameters and Microstructure with Mechanical Properties/Fracture Feature

      한글로보기

      https://www.riss.kr/link?id=A105994726

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Aluminum casting alloys have properties which are of great industrial interest, such as low density, good corrosion resistance,high thermal and electrical conductivities, good combination of mechanical properties, good workability in machiningprocesses and mechanical forming. Currently, these alloys are produced in various systems and dozens of compositions. Inthis investigation, a mutual interaction of thermal parameters, scale of the dendritic microstructure, intermetallic compounds(IMCs), microhardness and tensile properties/fracture characteristics of a casting Al–7wt%Si–3wt%Cu–0.3wt%Fe alloywas analyzed. Solidification experiments were developed using a furnace that promoted horizontal growth under transientheat flow conditions. Then, growth rate (VL), cooling rate (CR), and local solidification time (tSL) were determined frommeasured temperature profiles. Secondary dendritic spacings (λ2), Si particles, Fe-rich and Al2Cuintermetallic phases werecharacterized by optical and SEM microscopy, as well as the area mapping and point-wise EDS microanalysis. Hence, theinterrelations involving Vickers microhardness (HV), yield strength (σYS), ultimate tensile strength (σUTS) and elongation(E%) with microstructural features were evaluated by mathematical equations. IMCs as well as morphologies of Si were alsoanalyzed in the fracture regions. In addition, the experimental growth law of λ2 = f(tSL) proposed in this study was comparedwith a predictive theoretical model reported in the literature for multicomponent alloys. It was observed that areas that tendto grow faster (lowest λ2 values) were associated with the highest σUTS and E% values, while HV and σYS properties were notaffected by the thermal and microstructural parameters (CR and λ2). In addition, less extensive cleavage planes accompaniedby small dimples in were observed in fractured samples with lower λ2 values.
      번역하기

      Aluminum casting alloys have properties which are of great industrial interest, such as low density, good corrosion resistance,high thermal and electrical conductivities, good combination of mechanical properties, good workability in machiningprocesse...

      Aluminum casting alloys have properties which are of great industrial interest, such as low density, good corrosion resistance,high thermal and electrical conductivities, good combination of mechanical properties, good workability in machiningprocesses and mechanical forming. Currently, these alloys are produced in various systems and dozens of compositions. Inthis investigation, a mutual interaction of thermal parameters, scale of the dendritic microstructure, intermetallic compounds(IMCs), microhardness and tensile properties/fracture characteristics of a casting Al–7wt%Si–3wt%Cu–0.3wt%Fe alloywas analyzed. Solidification experiments were developed using a furnace that promoted horizontal growth under transientheat flow conditions. Then, growth rate (VL), cooling rate (CR), and local solidification time (tSL) were determined frommeasured temperature profiles. Secondary dendritic spacings (λ2), Si particles, Fe-rich and Al2Cuintermetallic phases werecharacterized by optical and SEM microscopy, as well as the area mapping and point-wise EDS microanalysis. Hence, theinterrelations involving Vickers microhardness (HV), yield strength (σYS), ultimate tensile strength (σUTS) and elongation(E%) with microstructural features were evaluated by mathematical equations. IMCs as well as morphologies of Si were alsoanalyzed in the fracture regions. In addition, the experimental growth law of λ2 = f(tSL) proposed in this study was comparedwith a predictive theoretical model reported in the literature for multicomponent alloys. It was observed that areas that tendto grow faster (lowest λ2 values) were associated with the highest σUTS and E% values, while HV and σYS properties were notaffected by the thermal and microstructural parameters (CR and λ2). In addition, less extensive cleavage planes accompaniedby small dimples in were observed in fractured samples with lower λ2 values.

      더보기

      참고문헌 (Reference)

      1 A. T. R. Franco, 21 : 1-8, 2018

      2 A.M. Samuel, 11 (11): 552-567, 2017

      3 A. M. Samuel, 30 : 4823-4833, 1995

      4 Z. Li, 367 : 96-110, 2004

      5 A. H. Musfirah, 8 : 4865-4875, 2012

      6 D. L. Soares, 12 : 413-428, 2017

      7 W. R. Osório, 6 : 6275-6289, 2011

      8 W. R. Osório, 56 : 8412-8421, 2011

      9 E. C. Araújo, 48 : 1163-1175, 2017

      10 E. Sjölander, 210 : 1249-1259, 2010

      1 A. T. R. Franco, 21 : 1-8, 2018

      2 A.M. Samuel, 11 (11): 552-567, 2017

      3 A. M. Samuel, 30 : 4823-4833, 1995

      4 Z. Li, 367 : 96-110, 2004

      5 A. H. Musfirah, 8 : 4865-4875, 2012

      6 D. L. Soares, 12 : 413-428, 2017

      7 W. R. Osório, 6 : 6275-6289, 2011

      8 W. R. Osório, 56 : 8412-8421, 2011

      9 E. C. Araújo, 48 : 1163-1175, 2017

      10 E. Sjölander, 210 : 1249-1259, 2010

      11 E. H. Samuel, 30 : 893-901, 1996

      12 A. M. Samuel, 105 : 951-962, 1997

      13 A. M. Samuel, 27 : 1785-1798, 1996

      14 Z. Li, 38 : 1203-1218, 2003

      15 Y. M. Han, 116 : 79-90, 2008

      16 M. F. Ibrahim, 32 : 2130-2142, 2011

      17 O. L. Rocha, 34 : 995-1006, 2003

      18 D. Bouchard, 28 : 651-663, 1997

      19 J. D. Hunt, 173 : 79-83, 1993

      20 H. Kaya, 34 : 707-712, 2012

      21 R. Trivedi, 34 : 395-401, 2003

      22 E. Çadırlı, 694 : 471-479, 2017

      23 M. Gündüz, 327 : 167-185, 2002

      24 H. Kaya, 255 : 3071-3078, 2008

      25 D. B. Carvalho, 16 : 874-883, 2013

      26 M. D. Peres, 381 : 168-181, 2004

      27 O. L. Rocha, 361 : 111-118, 2003

      28 F. Sá, 373 : 131-138, 2004

      29 C. Brito, 46 : 3342-3355, 2015

      30 R. Chen, 685 : 391-402, 2017

      31 T. A. Costa, 683 : 485-494, 2016

      32 A. J. Vasconcelos, 88 : 1099-1111, 2016

      33 T. A. Costa, 31 : 1103-1112, 2015

      34 D.J. Moutinho, 730–732 : 883-888, 2013

      35 M. Rappaz, 47 : 3205-3219, 1999

      36 R. Chen, 24 : 1645-1652, 2014

      37 T. Okamoto, 129 : 137-146, 1975

      38 W. Kalifa, 19 : 156-166, 2006

      39 J. A. Taylor, 1 : 19-33, 2012

      40 L. Liu, 40 : 2457-2469, 2009

      41 M. A. Moustafa, 209 : 605-610, 2009

      42 C. M. Dinnis, 37 : 3283-3291, 2006

      43 C. M. Dinnis, 425 : 286-296, 2006

      44 Z. Ma, 490 : 36-51, 2008

      45 N. Roy, 27 : 415-429, 1996

      46 C. Puncreobutr, 68 : 42-51, 2014

      47 R. V. Reyes, 685 : 235-243, 2017

      48 P. R. Goulart, 421 : 245-253, 2006

      49 K. Liu, 43 : 1231-1240, 2012

      50 André Santos Barros, "Measurements of Microhardness During Transient Horizontal Directional Solidification of Al-Rich Al-Cu Alloys: Effect of Thermal Parameters, Primary Dendrite Arm Spacing and Al2Cu Intermetallic Phase" 대한금속·재료학회 21 (21): 429-439, 2015

      51 I.J. Polmear, "Light Alloys: From Traditional Alloys to Nanocrystals" Elsevier Butterworth-Heinemann 2006

      52 Ashutosh Sharma, "Influence of Various Additional Elements in Al Based Filler Alloys for Automotive and Brazing Industry" 대한용접접합학회 34 (34): 1-8, 2015

      53 Emin Çadırlı, "Effect of Solidification Parameters on Mechanical Properties of Directionally Solidified Al-Rich Al-Cu Alloys" 대한금속·재료학회 19 (19): 411-422, 2013

      54 M. Warmuzek, "Aluminum–Silicon Casting Alloys: An Atlas of Microfractographs" ASM International 2004

      55 B. Altshuller, "Aluminum Brazing Handbook" The Aluminum Association Inc 1990

      56 ASM International, "ASM Handbook: Volume 12: Fractography, 9th edn" ASM International 1987

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2009-12-29 학회명변경 한글명 : 대한금속ㆍ재료학회 -> 대한금속·재료학회 KCI등재
      2008-01-01 평가 SCI 등재 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 2.05 0.91 1.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.03 0.86 0.678 0.22
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼