RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Tracking Strategy of Unmanned Aerial Vehicle for Tracking Moving Target

      한글로보기

      https://www.riss.kr/link?id=A107496437

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Unmanned aerial vehicles (UAVs) are prone to losing their targets when tracking moving objectives. A tracking strategy is proposed herein that enables the standoff tracking of a moving target using a vision system, which significantly reduces the occu...

      Unmanned aerial vehicles (UAVs) are prone to losing their targets when tracking moving objectives. A tracking strategy is proposed herein that enables the standoff tracking of a moving target using a vision system, which significantly reduces the occurrence of target loss. The strategy combines the Gimbal Control Algorithm based on Motion Compensation (GCAMC) with the Improved Reference Point Guidance Method (IRPGM). The GCAMC utilizes the attitude of the UAV and the deviation of the target from image center as the feedback. The target can be kept within the field-of-view (FOV) of the camera when the gimbal model is unknown. The IRPGM generates straight or circular paths according to the speed and potition of the target, while the UAV will continuously track the generated trajectory to achieve the objective of target tracking. To validate and demonstrate the tracking performance of the proposed strategy, a closed-loop visual simulation platform was devised and implemented to simulate the process of target tracking. The results of the simulation demonstrate that by using the proposed approach, the UAV can enter the desired trajectory quickly when its initial position and flight direction are arbitrary.

      더보기

      참고문헌 (Reference)

      1 A. Qadir, "Vision based neurofuzzy controller for a two axes gimbal system with small UAV" 74 (74): 1029-1047, 2014

      2 C. Kanellakisr, "Survey on computer vision for UAVs : Current developments and trends" 87 (87): 141-168, 2017

      3 S. Lim, "Standoff target tracking using a vector field for multiple unmanned aircrafts" 69 (69): 347-360, 2013

      4 Hui Ye, "Standoff Tracking of a Moving Target for Quadrotor Using Lyapunov Potential Function" 제어·로봇·시스템학회 18 (18): 845-855, 2020

      5 H. Oh, "Persistent standoff tracking guidance using constrained particle filter for multiple UAVs" 84 : 257-264, 2019

      6 S. Park, "Performance and lyapunov stability of a nonlinear path following guidance method" 30 (30): 1718-1728, 2007

      7 J. F. Henriques, "High-speed tracking with kernelized correlation filters" 37 (37): 583-596, 2014

      8 S. Park, "Guidance law for standoff tracking of a moving object" 40 (40): 2948-2955, 2017

      9 M. Zhang, "Guidance law for cooperative tracking of a ground target based on leaderfollower formation of UAVs" 39 (39): 321497-, 2018

      10 C. F. Hu, "Fuzzy multiobjective cooperative surveillance of multiple UAVs based on distributed predictive control for unknown ground moving target in urban environment" 84 : 329-338, 2019

      1 A. Qadir, "Vision based neurofuzzy controller for a two axes gimbal system with small UAV" 74 (74): 1029-1047, 2014

      2 C. Kanellakisr, "Survey on computer vision for UAVs : Current developments and trends" 87 (87): 141-168, 2017

      3 S. Lim, "Standoff target tracking using a vector field for multiple unmanned aircrafts" 69 (69): 347-360, 2013

      4 Hui Ye, "Standoff Tracking of a Moving Target for Quadrotor Using Lyapunov Potential Function" 제어·로봇·시스템학회 18 (18): 845-855, 2020

      5 H. Oh, "Persistent standoff tracking guidance using constrained particle filter for multiple UAVs" 84 : 257-264, 2019

      6 S. Park, "Performance and lyapunov stability of a nonlinear path following guidance method" 30 (30): 1718-1728, 2007

      7 J. F. Henriques, "High-speed tracking with kernelized correlation filters" 37 (37): 583-596, 2014

      8 S. Park, "Guidance law for standoff tracking of a moving object" 40 (40): 2948-2955, 2017

      9 M. Zhang, "Guidance law for cooperative tracking of a ground target based on leaderfollower formation of UAVs" 39 (39): 321497-, 2018

      10 C. F. Hu, "Fuzzy multiobjective cooperative surveillance of multiple UAVs based on distributed predictive control for unknown ground moving target in urban environment" 84 : 329-338, 2019

      11 B. R. Geiger, "Flight testing a real time implementation of a UAV path planner using direct collocation" 1-18, 2007

      12 M. Danelljan, "ECO : Efficient convolution operators for tracking" 6638-6646, 2017

      13 Z. Li, "Development and implementation of L1 gimbal tracking loop onboard of small UAV" 1-18, 2009

      14 H. Oh, "Decentralised standoff tracking of moving targets using adaptive sliding mode control for UAVs" 76 (76): 169-183, 2014

      15 A. A. Pothen, "Curvature-constrained Lyapunov vector field for standoff target tracking" 40 (40): 2729-2736, 2017

      16 E. W. Frew, "Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields" 31 (31): 290-306, 2008

      17 P. Yao, "Cooperative path planning with applications to target tracking and obstacle avoidance for multi-UAVs" 54 : 10-22, 2016

      18 J. Hong, "Cooperative circular pattern target tracking using navigation function" 76 : 105-111, 2018

      19 S. Park, "Circling over a target with relative side bearing" 39 (39): 1454-1458, 2016

      20 C. E. Lin, "Camera gimbal tracking from uav flight control" 319-322, 2014

      21 M. Danelljan, "Beyond correlation filters : Learning continuous convolution operators for visual tracking" Springer 472-488, 2016

      22 X. B. Qu, "A novel yaw control method for flying-wing aircraft in low speed regime" 69 : 636-649, 2017

      23 S. Park, "A new nonlinear guidance logic for trajectory tracking" 1-18, 2004

      24 A. Modirrousta, "A modified guidance law for ground moving target tracking with a class of the fast adaptive second-order sliding mode" 38 (38): 819-831, 2016

      25 Z. Y. Zhang, "A flexible new technique for camera calibration" 22 (22): 1330-1334, 2000

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼