RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Awakening Strategies from a Sleeping Mode to a Balancing Mode for a Sphere Robot

      한글로보기

      https://www.riss.kr/link?id=A104301809

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents the strategy of awakening a sphere robot from a sleep mode to a balancing mode.
      The sphere robot is designed on the basis of a single-wheel robot covered with two hemispheres to have the sphereshape with casters to maintain the sleep mode at a specific angle. The sleep angle has been empirically found tobe 16 degrees for enabling the sphere robot to be upright position. The gyroscopic force is controlled to performthe awakening strategy of the robot system. Firstly, the key design features such as angular momentum, agility,and controllable bandwidth are investigated to identify three phases such as triggering, stumbling, and stabilizingfor the awakening strategy. Secondly, the sphere robot is modeled as an inverted stick and the phase portrait of themodel is analyzed. Thirdly, a control law with a compensation algorithm is proposed to enhance the stabilizingperformance. Finally, the proposed awakening strategy is verified through experimental studies.
      번역하기

      This paper presents the strategy of awakening a sphere robot from a sleep mode to a balancing mode. The sphere robot is designed on the basis of a single-wheel robot covered with two hemispheres to have the sphereshape with casters to maintain the sle...

      This paper presents the strategy of awakening a sphere robot from a sleep mode to a balancing mode.
      The sphere robot is designed on the basis of a single-wheel robot covered with two hemispheres to have the sphereshape with casters to maintain the sleep mode at a specific angle. The sleep angle has been empirically found tobe 16 degrees for enabling the sphere robot to be upright position. The gyroscopic force is controlled to performthe awakening strategy of the robot system. Firstly, the key design features such as angular momentum, agility,and controllable bandwidth are investigated to identify three phases such as triggering, stumbling, and stabilizingfor the awakening strategy. Secondly, the sphere robot is modeled as an inverted stick and the phase portrait of themodel is analyzed. Thirdly, a control law with a compensation algorithm is proposed to enhance the stabilizingperformance. Finally, the proposed awakening strategy is verified through experimental studies.

      더보기

      참고문헌 (Reference)

      1 이상덕, "한 바퀴 밸런싱 로봇의 조향 안정화를 위한 외란관측기 설계 및 실험 연구" 제어·로봇·시스템학회 22 (22): 353-360, 2016

      2 이종현, "덕티드 팬을 이용한 외바퀴 자전거로봇의 균형 제어" 제어·로봇·시스템학회 20 (20): 895-899, 2014

      3 K. Pathak, "Velocity and position control of a wheeled inverted pendulum by partial feedback linearization" 21 (21): 505-513, 2005

      4 H. W. Broer, "The inverted pendulum : a singularity theory approach" 157 (157): 120-149, 1999

      5 T. Insperger, "Stick balancing with reflex delay in case of parametric forcing" 16 (16): 2160-2168, 2011

      6 Y. Ou, "Stabilization and line tracking of the gyroscopically stabilized robot" 2 : 1753-1758, 2002

      7 Y. Takahashi, "Soft raising and lowering of front wheels for inverse pendulum control wheel chair robot" 4 : 3618-3623, 2003

      8 N. Hoa, "Segway robotic mobility platform" 207 : 207-220, 2004

      9 "Segway"

      10 R. P. M. Chan, "Review of modeling and control of two-wheeled robots" 37 (37): 89-103, 2013

      1 이상덕, "한 바퀴 밸런싱 로봇의 조향 안정화를 위한 외란관측기 설계 및 실험 연구" 제어·로봇·시스템학회 22 (22): 353-360, 2016

      2 이종현, "덕티드 팬을 이용한 외바퀴 자전거로봇의 균형 제어" 제어·로봇·시스템학회 20 (20): 895-899, 2014

      3 K. Pathak, "Velocity and position control of a wheeled inverted pendulum by partial feedback linearization" 21 (21): 505-513, 2005

      4 H. W. Broer, "The inverted pendulum : a singularity theory approach" 157 (157): 120-149, 1999

      5 T. Insperger, "Stick balancing with reflex delay in case of parametric forcing" 16 (16): 2160-2168, 2011

      6 Y. Ou, "Stabilization and line tracking of the gyroscopically stabilized robot" 2 : 1753-1758, 2002

      7 Y. Takahashi, "Soft raising and lowering of front wheels for inverse pendulum control wheel chair robot" 4 : 3618-3623, 2003

      8 N. Hoa, "Segway robotic mobility platform" 207 : 207-220, 2004

      9 "Segway"

      10 R. P. M. Chan, "Review of modeling and control of two-wheeled robots" 37 (37): 89-103, 2013

      11 L. Moreno-Ahedo, "Parametric resonance cancellation via reshaping stability regions : numerical and experimental results" 22 (22): 753-760, 2014

      12 이승준, "Object Handling Control among Two-Wheel Robots and a Human Operator: An Empirical Approach" 제어·로봇·시스템학회 11 (11): 346-353, 2013

      13 M. W. Spong, "Nonlinear control of the inertia wheel pendulum" 37 (37): 1845-1851, 2001

      14 E. Mumm, "Miniature Control Moment Gyroscope development" 1-9, 2014

      15 Y. Xu, "Dynamic mobility with single-wheel configuration" 18 (18): 728-738, 1999

      16 T. Takaki, "Development of inverted pendulum robot capable of climbing stairs using planetary wheel mechanism" 5618-5624, 2013

      17 J. H. Park, "Development and control of a single-wheel robot : practical mechatronics approach" 23 (23): 594-606, 2013

      18 C. -H. Huang, "Design and implementation of fuzzy control on a two-wheel inverted pendulum" 58 (58): 2988-3001, 2011

      19 J. O. Lee, "Decoupled dynamic control for pitch and roll axes of the unicycle robot" 60 (60): 3814-3822, 2013

      20 Y. Zhu, "Adaptive control of a gyroscopically stabilized pendulum and its application to a single-wheel pendulum robot" 20 (20): 2095-2106, 2015

      21 S. B. Cardini, "A history of the monocycle stability and control from inside the wheel" 26 (26): 22-26, 2006

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼