RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      MobileNetV2 기술을 이용한 색소 세포성 모반과 악성 흑색종 Dermatoscopic 영상의 이진 분류 = MobileNetV2-based Binary Classification of Dermatoscopic Images of Melanocytic Nevi and Malignant Melanoma

      한글로보기

      https://www.riss.kr/link?id=A107949515

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      색소 세포성 모반과 악성 흑색종은 형태가 유사하지만 유해성의 측면에서 악성 흑색종은 암으로써 무해한 색소 세포성 모반에 비해 위험한 질환이다. 이에 기반하여 기존 연구에서 색소 세포성 모반과 악성 흑색종을 구분하기 위한 연구가 있었지만, 데이터를 취득하는 과정에서 많은 cost 가 필요하였다. 본 연구에서는 이를 개선하기 위해 두 병변의 dermatoscopic 영상을 분류 학습의 데이터로 사용하여 연구를 진행하였다. 학습을 위한 데이터는 오픈소스 dermatoscopic 데이터셋인 HAM10000 을 사용하였으며 모델은 CNN 에서 개선된 MobileNetV2 를 사용하였다. 실험 결과, MobileNetV2 를 사용한 학습은 3-layer CNN 에 비해 15 분의 1 가량 적은 파라미터를 가졌으며, 검증 성능과 테스트 성능에서 93%에 근사하는 성능을 보였다. 본 연구는 이전 연구에 비해 cost 측면에서 큰 개선을 이루었으며, 상용화 가능한 분류 기법을 발견했다는 점을 시사한다.
      번역하기

      색소 세포성 모반과 악성 흑색종은 형태가 유사하지만 유해성의 측면에서 악성 흑색종은 암으로써 무해한 색소 세포성 모반에 비해 위험한 질환이다. 이에 기반하여 기존 연구에서 색소 세...

      색소 세포성 모반과 악성 흑색종은 형태가 유사하지만 유해성의 측면에서 악성 흑색종은 암으로써 무해한 색소 세포성 모반에 비해 위험한 질환이다. 이에 기반하여 기존 연구에서 색소 세포성 모반과 악성 흑색종을 구분하기 위한 연구가 있었지만, 데이터를 취득하는 과정에서 많은 cost 가 필요하였다. 본 연구에서는 이를 개선하기 위해 두 병변의 dermatoscopic 영상을 분류 학습의 데이터로 사용하여 연구를 진행하였다. 학습을 위한 데이터는 오픈소스 dermatoscopic 데이터셋인 HAM10000 을 사용하였으며 모델은 CNN 에서 개선된 MobileNetV2 를 사용하였다. 실험 결과, MobileNetV2 를 사용한 학습은 3-layer CNN 에 비해 15 분의 1 가량 적은 파라미터를 가졌으며, 검증 성능과 테스트 성능에서 93%에 근사하는 성능을 보였다. 본 연구는 이전 연구에 비해 cost 측면에서 큰 개선을 이루었으며, 상용화 가능한 분류 기법을 발견했다는 점을 시사한다.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼