색소 세포성 모반과 악성 흑색종은 형태가 유사하지만 유해성의 측면에서 악성 흑색종은 암으로써 무해한 색소 세포성 모반에 비해 위험한 질환이다. 이에 기반하여 기존 연구에서 색소 세...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107949515
2021
-
500
학술저널
670-672(3쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
색소 세포성 모반과 악성 흑색종은 형태가 유사하지만 유해성의 측면에서 악성 흑색종은 암으로써 무해한 색소 세포성 모반에 비해 위험한 질환이다. 이에 기반하여 기존 연구에서 색소 세...
색소 세포성 모반과 악성 흑색종은 형태가 유사하지만 유해성의 측면에서 악성 흑색종은 암으로써 무해한 색소 세포성 모반에 비해 위험한 질환이다. 이에 기반하여 기존 연구에서 색소 세포성 모반과 악성 흑색종을 구분하기 위한 연구가 있었지만, 데이터를 취득하는 과정에서 많은 cost 가 필요하였다. 본 연구에서는 이를 개선하기 위해 두 병변의 dermatoscopic 영상을 분류 학습의 데이터로 사용하여 연구를 진행하였다. 학습을 위한 데이터는 오픈소스 dermatoscopic 데이터셋인 HAM10000 을 사용하였으며 모델은 CNN 에서 개선된 MobileNetV2 를 사용하였다. 실험 결과, MobileNetV2 를 사용한 학습은 3-layer CNN 에 비해 15 분의 1 가량 적은 파라미터를 가졌으며, 검증 성능과 테스트 성능에서 93%에 근사하는 성능을 보였다. 본 연구는 이전 연구에 비해 cost 측면에서 큰 개선을 이루었으며, 상용화 가능한 분류 기법을 발견했다는 점을 시사한다.
이중스케일분해기와 미세정보 보존모델에 기반한 다중 모드 의료영상 융합연구
자격시험에서 오토인코더 및 Semi-Supervised GAN 기반의 응시자 본인 확인 시스템 제안
TBHP 처리 세포의 이미지 인식을 통한 세포 생존율 구분에 관한 연구