RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      매립지의 메탄 배출 저감을 위한 생물공학기술 = Biotechnology for the Mitigation of Methane Emission from Landfills

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      메탄은 온실효과가 이산화탄소 보다 20배 이상인 대표적인 non-$CO_2$ 온실가스이다. 매립지는 주요 인위적 메탄 발생원으로, 매립지의 메탄 발생량은 연간 35~73 Tg(tera gram)으로 추정된다. 바이오커버(개방형 시스템)과 바이오필터(폐쇄형 시스템)을 이용하는 생물학적 방법은 메탄을 회수하여 자원화하기에는 메탄 농도가 너무 낮거나 가스 포집정이 설치되어 있지 않는 노후화된 매립지나 소규모 매립지로부터 메탄 배출을 저감할 수 있는 유용한 방법이다. 메탄을 유일탄소원과 에너지원으로 활용하는 메탄산화세균은 이러한 생물학적 방법에 있어 메탄을 산화시켜 제거하는데 매우 중요한 역할을 담당한다. 토양, compost, 지렁이 분변토 등과 같은 다양한 충전재를 이용하여 실험실 규모의 바이오커버/바이오필터의 메탄산화효율에 관한 많은 연구가 진행되었다. 이 중에서 compost는 가장 많이 이용되고 있는 충전재이고, compost를 이용한 바이오커버/바이오필터의 메탄산화속도는 50에서 $700\;g-CH_4\;m^{-2}\;d^{-1}$로 보고되고 있다. 또한, 실제 매립지에 파일럿 규모의 바이오커버/바이오필터를 설치하여 메탄 배출 저감 효과에 관한 연구도 진행되고 있다. 매립지의 메탄 배출 저감은 탄소배출권 거래와 연관될 수 있으므로, 바이오커버/바이오필터에 의한 메탄 저감량을 정확하게 평가하는 것이 매우 중요하다. 그러므로, 매립지 현장에 설치된 바이오커버/바이오필터의 성능을 평가하는 방법은 표준화되어야 하며, 메탄 저감량을 정확하게 정량화할 수 있는 방법 개발이 필요하다.
      번역하기

      메탄은 온실효과가 이산화탄소 보다 20배 이상인 대표적인 non-$CO_2$ 온실가스이다. 매립지는 주요 인위적 메탄 발생원으로, 매립지의 메탄 발생량은 연간 35~73 Tg(tera gram)으로 추정된다. 바이...

      메탄은 온실효과가 이산화탄소 보다 20배 이상인 대표적인 non-$CO_2$ 온실가스이다. 매립지는 주요 인위적 메탄 발생원으로, 매립지의 메탄 발생량은 연간 35~73 Tg(tera gram)으로 추정된다. 바이오커버(개방형 시스템)과 바이오필터(폐쇄형 시스템)을 이용하는 생물학적 방법은 메탄을 회수하여 자원화하기에는 메탄 농도가 너무 낮거나 가스 포집정이 설치되어 있지 않는 노후화된 매립지나 소규모 매립지로부터 메탄 배출을 저감할 수 있는 유용한 방법이다. 메탄을 유일탄소원과 에너지원으로 활용하는 메탄산화세균은 이러한 생물학적 방법에 있어 메탄을 산화시켜 제거하는데 매우 중요한 역할을 담당한다. 토양, compost, 지렁이 분변토 등과 같은 다양한 충전재를 이용하여 실험실 규모의 바이오커버/바이오필터의 메탄산화효율에 관한 많은 연구가 진행되었다. 이 중에서 compost는 가장 많이 이용되고 있는 충전재이고, compost를 이용한 바이오커버/바이오필터의 메탄산화속도는 50에서 $700\;g-CH_4\;m^{-2}\;d^{-1}$로 보고되고 있다. 또한, 실제 매립지에 파일럿 규모의 바이오커버/바이오필터를 설치하여 메탄 배출 저감 효과에 관한 연구도 진행되고 있다. 매립지의 메탄 배출 저감은 탄소배출권 거래와 연관될 수 있으므로, 바이오커버/바이오필터에 의한 메탄 저감량을 정확하게 평가하는 것이 매우 중요하다. 그러므로, 매립지 현장에 설치된 바이오커버/바이오필터의 성능을 평가하는 방법은 표준화되어야 하며, 메탄 저감량을 정확하게 정량화할 수 있는 방법 개발이 필요하다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Methane, as a greenhouse gas, is some 21~25 times more detrimental to the environmental than carbon dioxide. Landfills generally constitute the most important anthropogenic source, and methane emission from landfill was estimated as 35~73 Tg per year. Biological approaches using biocover (open system) and biofilter (closed system) can be a promising solution for older and/or smaller landfills where the methane production is too low for energy recovery or flaring and installation of a gas extraction system is inefficient. Methanotrophic bacteria, utilizing methane as a sole carbon and energy source, are responsible for the aerobic degradation (oxidation) of methane in the biological systems. Many bench-scale studies have demonstrated a high oxidation capacity in diverse filter bed materials such as soil, compost, earthworm cast and etc. Compost had been most often employed in the biological systems, and the methane oxidation rates in compost biocovers/boifilters ranged from 50 to $700\;g-CH_4\;m^{-2}\;d^{-1}$. Some preliminary field trials have showed the suitability of biocovers/biofilters for practical application and their satisfactory performance in mitigation methane emissions. Since the reduction of landfill methane emissions has been linked to carbon credits and trading schemes, the verified quantification of mitigated emissions through biocovers/biofilters is very important. Therefore, the assessment of in situ biocovers/biofilters performance should be standardized, and the reliable quantification methods of methane reduction is necessary.
      번역하기

      Methane, as a greenhouse gas, is some 21~25 times more detrimental to the environmental than carbon dioxide. Landfills generally constitute the most important anthropogenic source, and methane emission from landfill was estimated as 35~73 Tg per year....

      Methane, as a greenhouse gas, is some 21~25 times more detrimental to the environmental than carbon dioxide. Landfills generally constitute the most important anthropogenic source, and methane emission from landfill was estimated as 35~73 Tg per year. Biological approaches using biocover (open system) and biofilter (closed system) can be a promising solution for older and/or smaller landfills where the methane production is too low for energy recovery or flaring and installation of a gas extraction system is inefficient. Methanotrophic bacteria, utilizing methane as a sole carbon and energy source, are responsible for the aerobic degradation (oxidation) of methane in the biological systems. Many bench-scale studies have demonstrated a high oxidation capacity in diverse filter bed materials such as soil, compost, earthworm cast and etc. Compost had been most often employed in the biological systems, and the methane oxidation rates in compost biocovers/boifilters ranged from 50 to $700\;g-CH_4\;m^{-2}\;d^{-1}$. Some preliminary field trials have showed the suitability of biocovers/biofilters for practical application and their satisfactory performance in mitigation methane emissions. Since the reduction of landfill methane emissions has been linked to carbon credits and trading schemes, the verified quantification of mitigated emissions through biocovers/biofilters is very important. Therefore, the assessment of in situ biocovers/biofilters performance should be standardized, and the reliable quantification methods of methane reduction is necessary.

      더보기

      참고문헌 (Reference)

      1 Bodrossy, L, "mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray" 72 : 1672-1676, 2006

      2 United States Department of Energy, "US climate change technology program-technology options for the near and long term"

      3 Brosseau, J, "Trace gas compound emissions from municipal landfill sanitary sites" 28 : 285-293, 1996

      4 Fung, I, "Three-dimensional model synthesis of the global methane cycle" 96 : 13033-13065, 1991

      5 Park, S. Y, "The use of biofilters to reduce atmospheric methane emissions from landfills: part I biofilter design" 155 : 63-85, 2004

      6 Reinhart, D. R, "The impact of leachate recirculation on municipal solid waste landfill operating characteristics" 14 : 337-346, 1996

      7 Park, S, "The effect of various environmental and design parameters on methane oxidation in a model biofilter" 20 : 434-444, 2002

      8 Kettunen, R. H, "The effect of low temperature (5-29oC) and adaptation on the methanogenic activity of biomass" 48 : 570-576, 1997

      9 Perdikea, K, "Study of thin biocovers(TBC)for oxidizing uncaptured methane emissions in bioreactor landfills.Waste Manag.28:1364-1374" 28 : 1364-1374, 2008

      10 Ayalon, O, "Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation" 27 : 697-704, 2001

      1 Bodrossy, L, "mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray" 72 : 1672-1676, 2006

      2 United States Department of Energy, "US climate change technology program-technology options for the near and long term"

      3 Brosseau, J, "Trace gas compound emissions from municipal landfill sanitary sites" 28 : 285-293, 1996

      4 Fung, I, "Three-dimensional model synthesis of the global methane cycle" 96 : 13033-13065, 1991

      5 Park, S. Y, "The use of biofilters to reduce atmospheric methane emissions from landfills: part I biofilter design" 155 : 63-85, 2004

      6 Reinhart, D. R, "The impact of leachate recirculation on municipal solid waste landfill operating characteristics" 14 : 337-346, 1996

      7 Park, S, "The effect of various environmental and design parameters on methane oxidation in a model biofilter" 20 : 434-444, 2002

      8 Kettunen, R. H, "The effect of low temperature (5-29oC) and adaptation on the methanogenic activity of biomass" 48 : 570-576, 1997

      9 Perdikea, K, "Study of thin biocovers(TBC)for oxidizing uncaptured methane emissions in bioreactor landfills.Waste Manag.28:1364-1374" 28 : 1364-1374, 2008

      10 Ayalon, O, "Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation" 27 : 697-704, 2001

      11 Olivier., J. G. J, "Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1×1" 2 : 241-263, 1999

      12 He, R, "Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms" 99 : 7192-7199, 2008

      13 Kumar, S, "Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study" 38 : 4921-4929, 2004

      14 Le Mer, J. P, "Production, oxidation, emission and consumption of methane by soils: A review" 37 : 25-50, 2001

      15 Perry, R. H, "Perry’s chemical engineers handbook. 7th edn" McGraw-Hill 1997

      16 Gebert, J, "Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane" 26 : 399-407,

      17 Karl, T. R, "Modern global climate change" 302 : 1719-1723, 2003

      18 Bogner, J, "Modeling landfill methane emissions from biocovers, a combined theoretical-empirical approach" 2005

      19 Mosier, A. R, "Mitigating agricultural emissions of methane" 40 : 39-80, 1998

      20 Streese, J, "Microbial oxidation of methane from old landfills in biofilters" 23 : 573-580, 2003

      21 Humer, M, "Microbial methane oxidation for the reduction of landfill gas emissions" 27 : 146-151, 2001

      22 Torsvik V, "Microbial diversity and function in soil: from genes to ecosystems" 5 : 240-245, 2002

      23 Min, H, "Microbial aerobic oxidation of methane in paddy soil" 64 : 79-85, 2002

      24 Hanson, R. S, "Methanotrophic bacteria" 60 : 439-471, 1996

      25 Visvanathan, C, "Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration" 17 : 313-323, 1999

      26 Hettiaratchi, J. P. A, "Methanobiofilters (MBFs) and landfill cover systems for CH4 emission mitigation" 2001

      27 Kumaraswamy, S, "Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species" 30 : 2195-2201, 2001

      28 Powelson, D. K, "Methane oxidation in water-spreading and compost biofilters" 24 : 528-536, 2006

      29 Stein, V. B, "Methane oxidation in three Alberta soils: influence of soil parameters and methane flux rates" 22 : 101-111, 2001

      30 Reay, D. S, "Methane oxidation in temperate soils: effects of inorganic N" 36 : 2059-2065, 2004

      31 De Visscher, A, "Methane oxidation in simulated landfill cover soil environments" 33 : 1854-1859, 1999

      32 Kravchenko, I. K, "Methane oxidation in boreal peat soils treated with various nitrogen compounds" 24 : 157-162, 2002

      33 Bajic, Z, "Methane oxidation in alternative landfill cover soils" 2001

      34 Boeckx, P, "Methane oxidation in a neutral landfill cover soil-influence of moisture content, temperature, and nitrogen-turnover" 25 : 178-183, 1996

      35 Berger, J, "Methane oxidation in a landfill cover with capillary barrier" 25 : 369-373, 2005

      36 Einola, J.-K. M, "Methane oxidation in a boreal climate in an experimental landfill cover composed from mechanically-biologically treated waste" 407 : 67-83, 2008

      37 Christophersen, M, "Methane oxidation at low temperature in soil exposed to landfill gas" 29 : 1989-1977, 2000

      38 Einola J, "Methane oxidation at a surface-sealed boreal landfill" 2009

      39 Hilger, H. A, "Methane oxidation and microbial exopolymer production in landfill cover soil" 32 : 457-467,

      40 Spokas, K, "Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems?" 6 : 516-525, 2006

      41 Laurila, T, "Measuring methane emissions from a landfill using a costeffective micrometeorological method" 32 : 9808

      42 Hettiarachchi, V. C, "Mass, heat, and moisture transport in ethanol biofilters" Ph. D. Thesis, University of Calgary 2005

      43 Wilshusen, J. H, "Long-term behavior of passively aerated compost, methanotrophic biofilter columns" 24 : 643-653, 2004

      44 Christophersen, M, "Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration" 19 : 579-594, 2001

      45 Hilger, H. A, "Landfill methane oxidation response to vegetation, fertilization, and liming" 29 : 324-334, 2000

      46 Jaffrin, A, "Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth" 86 : 113-123, 2003

      47 Gebert, J, "Kinetics of microbial landfill methane oxidation in biofilter" 23 : 609-619, 2003

      48 Parker, T, "Investigation of the composition and emissions of trace components in landfill gas" 2002

      49 Houweling, S, "Inverse modeling of methane sources and sinks using the adjoint of a global transport model" 104 : 26137-26160, 1999

      50 Mohanty, R. S, "Influence of heavy metals on methane oxidation in tropical rice soils" 47 : 277-284, 2000

      51 Cao, M, "Global methane emission from wetlands and its sensitivity to climate change" 32 : 3293-3299, 1998

      52 Bogner, J, "Fluxes of methane between landfills and the atmosphere: natural and engineered controls" 13 : 268-277, 1997

      53 Janni, K. A, "Evaluation of biofiltration of air-an innovative air pollution control strategy" 107 : 198-214, 2001

      54 Haubrichs, R, "Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas" 26 : 408-416, 2006

      55 Im, J, "Estimation of mass transport parameters of gases for quantifying CH4 oxidation in landfill soil covers" 29 : 869-875, 2009

      56 Aye, L, "Environmental and economic analyses of waste disposal options for traditional markets in Indonesia" 26 : 1180-1191, 2006

      57 Du Plessis, C. A, "Empirical model for methane oxidation using a composted pine bark biofilter.Fuel 82:1359-1365" 2003

      58 Nikiema, J, "Elimination of methane generated from landfills by biofiltration: a review" 6 : 261-284, 2007

      59 Park, S, "Effects of earthworm cast and powdered activated carbon on methane removal capacity of landfill cover soils" 70 : 1117-1123, 2008

      60 Abichou, T, "Effects of compost biocovers on gas flow and methane oxidation in a landfill cover" 29 : 1595-1601, 2009

      61 Bender, M, "Effect of CH4 concentrationsz and soil conditions on the induction of CH4 oxidation activity" 27 : 1517-1527, 1995

      62 Sly, L. I, "Development of a biofilter for the removal of methane from coal mine ventilation atmospheres" 39 : 400-404, 1993

      63 Intergovernmental Panel on Climate Change, "Climate change 2007: The physical science basis" Cambridge University Press 2007

      64 Intergovernmental Panel on Climate Change, "Climate change 2001: The scientific basis" Cambridge University Press 2001

      65 Intergovernmental Panel on Climate Change, "Climate Change 1995: The science of climate change" Cambridge University Press 1995

      66 Lelieveld, J, "Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Series 50B: 128-150. 53. McDonald, I. R., L. Bodrossy, Y. Chen, and J. C. Murrell 2008. Molecular ecology techniques for the study of aerobic methanotrophs" 74 : 1305-1315, 2008

      67 Trotsenko, Y. A, "Biology of extremophilic and extremotolerant methanotrophs" 177 : 123-131, 2002

      68 Nikiema, J, "Biogas, a real problem: Biofiltration, a promising solution. Proceedings of the USCCSC-TRG Conference on Biofiltration" 2004

      69 Hettiaratchi, J. P. A, "Biofiltration: A cost-effective technique for controlling methane emissions from sub-surface sources" Balkema Rotterdam 2000

      70 Huber-Humer, M, "Approaches to assess biocover performance on landfills"

      71 Auman, A. J, "Analysis of sMMO containing type I methanotrophs in Lake Washington sediment" 4 : 517-524, 2002

      72 Gebert, J, "Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray" 10 : 1175-1188, 2008

      73 Caldwell, S, "Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms" 42 : 6791-6799, 2008

      74 Hein, R, "An inverse modeling approach to investigate the global atmospheric methane cycle" 11 : 43-76, 1997

      75 Humer, M, "Alternative approach to the elimination of greenhouse gases from old landfills" 7 : 443-452, 1999

      76 Huber-Humer, M, "Abatement of landfill methane emissions by microbial oxidation in biocovers made of compost" Ph. D. Thesis, University of Natural Resources and Applied Life Sciences, Institute of Waste Management 2004

      77 Muezzinoglu, A, "A study of volatile organic sulfur emissions causing urban odors" 51 : 245-252, 2003

      78 Stein, V. B, "A numerical model for biological oxidation and migration of methane in soils" 5 : 225-234, 2001

      79 Popov, V, "A new landfill system for cheaper landfill gas purification" 30 : 1021-1029, 2005

      80 Tagaris, E, "A methodology to estimate odors around landfill sites: the use of methane as an odor index and its utility in landfill sitting" 53 : 629-634, 2003

      81 Philopoulos, A, "A laboratory-scale comparison of compost and sand-compostperlite as methane-oxidizing biofilter media" 27 : 138-146, 2009

      82 Stralis-Pavese, N, "16S rRNA based T-RFLP analysis of methane oxidizing bacteria-Assessment, critical evaluation of methodology performance and application for landfill site cover soils" 31 : 251-266, 2006

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2015-09-23 학술지명변경 외국어명 : Korean Journal of Microbiology and Biotechnology -> Microbiology and Biotechnology Letters KCI등재
      2010-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.6 0.6 0.65
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.53 0.55 0.977 0.18
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼