RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      화이트바이오텍기반 방향족화합물 개발에 관한 연구동향 = Research Trend about the Development of White Biotech-Based Aromatic Compounds

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      원유의 고갈, 반복되는 에너지 위기 및 지구온난화 문제에 기인하여 석유 대신 재생가능한 바이오매스를 사용하여 방향족 화학원료를 개발하는 연구가 광범위하게 진행되고 있다. 특히, 바이오테크놀로지를 이용한 포도당으로부터 방향족아미노산 생합성경로 중간대사체 및 그 유도체 합성기술은 벤젠유래 화합물을 포함한 많은 방향족 석유화학원료를 대체할 가능성이 있는 기술들이 개발되고 있다. 본 고는 미생물 대사공학, 생물전환, 화학공정 기술을 이용하여 hydroquinone, catechol, adipic acid, shikimic acid, gallic acid, pyrogallol, vanillin, p-hydroxycinnamic acid, p-hydroxystyrene, p-hydroxybenzoic acid, indigo, indole 3-acetic acid와 같은 방향족화합물을 어떻게 개발하고 있는지를 논하였다. 또한, 경쟁력있는 화이트바이오텍기반 방향족화합물 생산기술을 개발하기 위한 문제점 및 해결방안등을 논했다.
      번역하기

      원유의 고갈, 반복되는 에너지 위기 및 지구온난화 문제에 기인하여 석유 대신 재생가능한 바이오매스를 사용하여 방향족 화학원료를 개발하는 연구가 광범위하게 진행되고 있다. 특히, 바...

      원유의 고갈, 반복되는 에너지 위기 및 지구온난화 문제에 기인하여 석유 대신 재생가능한 바이오매스를 사용하여 방향족 화학원료를 개발하는 연구가 광범위하게 진행되고 있다. 특히, 바이오테크놀로지를 이용한 포도당으로부터 방향족아미노산 생합성경로 중간대사체 및 그 유도체 합성기술은 벤젠유래 화합물을 포함한 많은 방향족 석유화학원료를 대체할 가능성이 있는 기술들이 개발되고 있다. 본 고는 미생물 대사공학, 생물전환, 화학공정 기술을 이용하여 hydroquinone, catechol, adipic acid, shikimic acid, gallic acid, pyrogallol, vanillin, p-hydroxycinnamic acid, p-hydroxystyrene, p-hydroxybenzoic acid, indigo, indole 3-acetic acid와 같은 방향족화합물을 어떻게 개발하고 있는지를 논하였다. 또한, 경쟁력있는 화이트바이오텍기반 방향족화합물 생산기술을 개발하기 위한 문제점 및 해결방안등을 논했다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Due to the depleting petroleum reserve, recurring energy crisis, and global warming, it is necessary to study the development of white biotech-based aromatic chemical feedstock from renewable biomass for replacing petroleum-based one. In particular, the production of aromatic intermediates and derivatives in biosynthetic pathway of aromatic amino acids from glucose might be replaced by the production of petrochemical-based aromatic chemical feedstock including benzene-derived aromatic compounds. In this review, I briefly described the production technology for hydroquinone, catechol, adipic acid, shikimic acid, gallic acid, pyrogallol, vanillin, p-hydroxycinnamic acid, p-hydroxystyrene, p-hydroxybenzoic acid, indigo, and indole 3-acetic acid using metabolic engineering, bioconversion, and chemical process. The problems and possible solutions regarding development of production technology for competitive white biotech-based aromatic compounds were also discussed.
      번역하기

      Due to the depleting petroleum reserve, recurring energy crisis, and global warming, it is necessary to study the development of white biotech-based aromatic chemical feedstock from renewable biomass for replacing petroleum-based one. In particular, t...

      Due to the depleting petroleum reserve, recurring energy crisis, and global warming, it is necessary to study the development of white biotech-based aromatic chemical feedstock from renewable biomass for replacing petroleum-based one. In particular, the production of aromatic intermediates and derivatives in biosynthetic pathway of aromatic amino acids from glucose might be replaced by the production of petrochemical-based aromatic chemical feedstock including benzene-derived aromatic compounds. In this review, I briefly described the production technology for hydroquinone, catechol, adipic acid, shikimic acid, gallic acid, pyrogallol, vanillin, p-hydroxycinnamic acid, p-hydroxystyrene, p-hydroxybenzoic acid, indigo, and indole 3-acetic acid using metabolic engineering, bioconversion, and chemical process. The problems and possible solutions regarding development of production technology for competitive white biotech-based aromatic compounds were also discussed.

      더보기

      참고문헌 (Reference)

      1 Stadthagen, G, "p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis" 280 : 40699-40706, 2005

      2 "http://www.wikipedia.org/"

      3 "http://www.frostchemlab.com/index.htm"

      4 "http://www.europabio.org/positions/DSM-WB.pdf"

      5 "http://www.ebn.co.kr/news/n_view.html?id=373795&kind=rank_code&keys=2"

      6 http://www.chemlocus.co.kr/, "http://www.chemlocus.co.kr/"

      7 "http://www.biosafety.or.kr/index.asp"

      8 "http://chem.ebn.co.kr/"

      9 Ikeda, M, "Towards bacterial strains overproducing Ltryptophan and other aromatics by metabolic engineering" 69 : 615-626, 2006

      10 Li, K, "Synthesis of vanillin from glucose" 120 : 10545-10546, 1998

      1 Stadthagen, G, "p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis" 280 : 40699-40706, 2005

      2 "http://www.wikipedia.org/"

      3 "http://www.frostchemlab.com/index.htm"

      4 "http://www.europabio.org/positions/DSM-WB.pdf"

      5 "http://www.ebn.co.kr/news/n_view.html?id=373795&kind=rank_code&keys=2"

      6 http://www.chemlocus.co.kr/, "http://www.chemlocus.co.kr/"

      7 "http://www.biosafety.or.kr/index.asp"

      8 "http://chem.ebn.co.kr/"

      9 Ikeda, M, "Towards bacterial strains overproducing Ltryptophan and other aromatics by metabolic engineering" 69 : 615-626, 2006

      10 Li, K, "Synthesis of vanillin from glucose" 120 : 10545-10546, 1998

      11 Kambourakis, S, "Synthesis of gallic acid and pyrogallol from glucose: replacing natural product isolation with microbial catalysis" 122 : 9042-9043, 2000

      12 Kerbarh, O, "Salicylate biosynthesis: overexpression, purification, and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica" 187 : 5061-5066, 2005

      13 Eschrich, K, "Role of Tyr201 and Tyr385 in substrate activation by p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens" 216 : 137-146, 1993

      14 Patten, C. L, "Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS" 48 : 635-642, 2002

      15 Chandran, S. S, "Phosphoenolpyruvate availability and the biosynthesis of shikimic acid" 19 : 808-814, 2003

      16 Kikuchi, Y. T, "Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli" 63 : 761-762, 1997

      17 Ray, J. M, "Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli" 170 : 5500-5506, 1988

      18 Flanaginagin, L. W, "Molecular model of phenolic polymer dissolution in photolithography" 37 : 2103-2113, 1999

      19 Cavin, J. F, "Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization" 63 : 1939-1944, 1997

      20 Barker, J, "Microbial synthesis of phydroxybenzoic acid from glucose" 76 : 376-390, 2001

      21 Li, K, "Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources" 15 : 876-883, 1999

      22 Viitanen, P. V, "Metabolic engineering of the chloroplast genome using the Echerichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis" 136 : 4048-4060, 2004

      23 Mullera, U, "Metabolic engineering of the E. coli L-phenylalanine pathway for the production of D-phenylglycine" 8 : 196-208, 2006

      24 Kramer, M, "Metabolic engineering for microbial production of shikimic acid" 5 : 277-283, 2003

      25 Kerbarh, O, "Mechanistic and inhibition studies of chorismate utilizing enzymes" 33 : 763-766, 2005

      26 Berry, A, "Improving production of aromatic compounds in Escherichia coli by metabolic engineering" 14 : 250-256, 1996

      27 Qia, W. W, "Functional expression of prokaryotic and eukaryotic genes in Escherichia coli for conversion of glucose to p-hydroxystyrene" 9 : 268-276, 2007

      28 Sprenger, G. A, "From scratch to value: engineering Escherichia coli wild type cells to the production of Lphenylalanine and other fine chemicals derived from chorismate" 75 : 739-749, 2007

      29 Li, K, "Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli" 64 : 61-73, 1999

      30 Sariaslani, F. S, "Development of a combined biological and chemical process for production of industrial aromatics from renewable resources" 61 : 51-69, 2007

      31 Buss, K, "Clustering of isochorismate synthase genes menF and entC and channeling of isochorismate in Escherichia coli" 1522 : 151-157, 2001

      32 Weaver, L. M, "Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-Darabino-heptulosonate-7-phosphate synthase" 172 : 6581-6584, 1990

      33 Nichols, B, "Cloning and sequencing of Escherichia coli ubiC and purification of chorismate lyase" 174 : 5309-5316, 1992

      34 Holden, M. J, "Chorismate lyase: kinetics and engineering for stability" 1594 : 160-167, 2002

      35 Entsch, B, "Catalytic function of tyrosine residues in para-hydroxybenzoate hydroxylase as determined by the study of sitedirected mutants" 266 : 17341-17349, 1991

      36 Jeong, S. H, "Capacitance enhancement in the accumulation region of C-V characteristics in metal-insulator-semiconductor capacitors consisting of pentacene and poly-4-vinylphenol" 94 : 183-302, 2009

      37 Trotman, R. J, "Calcium alginate bead immobilization of cells containing tyrosine ammonia lyase activity for use in the production of p-hydroxycinnamic acid" 23 : 638-644, 2007

      38 Priefert, H, "Biotechnological production of vanillin" 56 : 296-314, 2001

      39 Verhoef, S, "Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation" 75 : 931-936, 2009

      40 Verhoef, S, "Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12" 132 : 49-56, 2007

      41 Gibson, J. M, "Benzene-free synthesis of phenol" 40 : 1945-1948, 2001

      42 Ran, N, "Benzene-free synthesis of hydroquinone" 123 : 10927-10934, 2001

      43 Li, W, "Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis" 127 : 2874-2882, 2005

      44 Niu, W, "Benzene-free synthesis of adipic acid" 18 : 201-211, 2002

      45 Berry, A, "Application of metabolic engineering to improve both the production and use of biotech indigo" 28 : 127-133, 2002

      46 Yi, J, "Altered glucose transport and shikimate pathway product yields in E" 19 : 1450-1459, 2003

      47 Dosselaere, F, "A Metabolic node in action: chorismate-utilizing enzymes in microorganisms" 27 : 75-131, 2001

      48 Franke, D, "(S,S)-2,3-Dihydroxy-2,3-dihydrobenzoic acid: microbial access with engineered cells of Escherichia coli and application as starting material in natural-product synthesis" 9 : 4188-4196, 2003

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2015-09-23 학술지명변경 외국어명 : Korean Journal of Microbiology and Biotechnology -> Microbiology and Biotechnology Letters KCI등재
      2010-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.6 0.6 0.65
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.53 0.55 0.977 0.18
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼