RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      수직밀폐형 지중열교환기의 회로 과도해석 상사모델 개발

      한글로보기

      https://www.riss.kr/link?id=A60086864

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Several numerical or analytical models have been proposed to analyze the thermal response of vertical ground heat exchangers (GHEX). However, most models are valid only after several hours of operation since they neglect the heat capacity of the borehole. Recently, the short time response of the GHEX became important in system simulation to improve efficiency. In this paper, a simple new method to evaluate the short time response of the GHEX by using an analogy model of electric circuit transient analysis was presented. The new transient heat exchanger model adopting the concept of thermal capacitance of the borehole as well as the steady-state thermal resistance showed the transient thermal resistance of the borehole. The model was validated by in-situ thermal response test and then compared with the DST model of the TRNSYS program.
      번역하기

      Several numerical or analytical models have been proposed to analyze the thermal response of vertical ground heat exchangers (GHEX). However, most models are valid only after several hours of operation since they neglect the heat capacity of the boreh...

      Several numerical or analytical models have been proposed to analyze the thermal response of vertical ground heat exchangers (GHEX). However, most models are valid only after several hours of operation since they neglect the heat capacity of the borehole. Recently, the short time response of the GHEX became important in system simulation to improve efficiency. In this paper, a simple new method to evaluate the short time response of the GHEX by using an analogy model of electric circuit transient analysis was presented. The new transient heat exchanger model adopting the concept of thermal capacitance of the borehole as well as the steady-state thermal resistance showed the transient thermal resistance of the borehole. The model was validated by in-situ thermal response test and then compared with the DST model of the TRNSYS program.

      더보기

      목차 (Table of Contents)

      • ABSTRACT
      • 1. 서론
      • 2. ETAB 해석모델
      • 3. ETAB 해석모델의 검증
      • 4. 변수분석 결과
      • ABSTRACT
      • 1. 서론
      • 2. ETAB 해석모델
      • 3. ETAB 해석모델의 검증
      • 4. 변수분석 결과
      • 5. 결론
      • 참고문헌
      더보기

      참고문헌 (Reference)

      1 Eskilson, P., "Thermal Analysis of Heat Extraction Boreholes" University of Lund 1987

      2 Ingersoll, L. R., "Theory of the ground heat pipe heat source for the heat pump" 199-122, 1948

      3 Paul, N. D., "The Effect of Grout Thermal Conductivity on Vertical Geothermal Heat Exchanger Design and Performance" South Dakota State University 1996

      4 Kavanaugh, S. P., "Simulation and Experimental Verification of Vertical Ground-Coupled Heat Pump Systems" Oklahoma State University 1985

      5 Kelvin, S. W. T., "Mathematical and physical papers, Cambridge University Press, Vol. 1" Cambridge University Press 1882

      6 SEL, "Manual, A Transient Simulation Program, Version 15"

      7 Smith, D. L., "Introduction to dynamic systems modeling for design" Prentice Hall International 1994

      8 Ingersoll, L. R., "Heat Conduction with Engineering, Geological and Other Applications, 2nd ed" McGraw-Hill 1954

      9 Carslaw, H. S., "Heat Conduction in Solids" Claremore Press 1947

      10 Hellstrom, G., "Ground Heat Storage Thermal Analysis of Duct Storage Systems, Part I Theory" University of Lund 1991

      1 Eskilson, P., "Thermal Analysis of Heat Extraction Boreholes" University of Lund 1987

      2 Ingersoll, L. R., "Theory of the ground heat pipe heat source for the heat pump" 199-122, 1948

      3 Paul, N. D., "The Effect of Grout Thermal Conductivity on Vertical Geothermal Heat Exchanger Design and Performance" South Dakota State University 1996

      4 Kavanaugh, S. P., "Simulation and Experimental Verification of Vertical Ground-Coupled Heat Pump Systems" Oklahoma State University 1985

      5 Kelvin, S. W. T., "Mathematical and physical papers, Cambridge University Press, Vol. 1" Cambridge University Press 1882

      6 SEL, "Manual, A Transient Simulation Program, Version 15"

      7 Smith, D. L., "Introduction to dynamic systems modeling for design" Prentice Hall International 1994

      8 Ingersoll, L. R., "Heat Conduction with Engineering, Geological and Other Applications, 2nd ed" McGraw-Hill 1954

      9 Carslaw, H. S., "Heat Conduction in Solids" Claremore Press 1947

      10 Hellstrom, G., "Ground Heat Storage Thermal Analysis of Duct Storage Systems, Part I Theory" University of Lund 1991

      11 Han, J. S., "Geothermal heat pump HVAC system" Hanrimwon 2005

      12 Incropera, F. P., "Fundamentals of Heat and Mass Ttransfer, 6th ed." John Wiley and Sons 2007

      13 Huber, A., "Erweiterung des Programms EWS fur Erdwarmedson-denfelder, Forschungsprogramm Umgebungs und Abwarme, Warme-Kraft-Kopplung(UAW)" Bundesamt fur Energie(BFE). 1997

      14 Hayt, W. H. Jr., "Engineering Circuit Analysis, 7th ed." McGraw-Hill 308-311, 2006

      15 Kasuda, T., "Earth temperature and thermal diffusivity at selected stations in the United States" 71 (71): 1965

      16 Young, T., "Development, Verification, and Design Analysis of the Borehole Fluid Thermal Mass Model for Approximating Short Term Borehole Thermal Response" Oklahoma State University 2001

      17 Sutton, M. G., "An algorithm for approximating the performance of vertical bore heat exchangers installed in a stratified geological regime" 108 (108): 177-184, 2002

      18 Yavuzturk, C., "A short time step response factor model for vertical ground loop heat exchangers" 105 (105): 475-485, 1999

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 계속평가 신청대상 (등재유지)
      2017-01-01 평가 우수등재학술지 선정 (계속평가)
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.8 0.8 0.62
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.51 0.44 0.622 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼