RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      준모수적 방법을 이용한 랜덤 절편 로지스틱 모형 분석 = Semiparametric Approach to Logistic Model with Random Intercept

      한글로보기

      https://www.riss.kr/link?id=A105726796

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Logistic models with a random intercept are useful to analyze longitudinal binary data. Traditionally, the random intercept of the logistic model is assumed to be parametric (such as normal distribution) and is also assumed to be independent to variables. Such assumptions are very strong and restricted for application to real data. Recently, Garcia and Ma (2015) derived semiparametric efficient estimators for logistic model with a random intercept without these assumptions. Their estimator shows the consistency where we do not assume any parametric form for the random intercept. In addition, the method is computationally simple. In this paper, we apply this method to analyze toenail infection data. We compare the semiparametric estimator with maximum likelihood estimator, penalized quasi-likelihood estimator and hierarchical generalized linear estimator.
      번역하기

      Logistic models with a random intercept are useful to analyze longitudinal binary data. Traditionally, the random intercept of the logistic model is assumed to be parametric (such as normal distribution) and is also assumed to be independent to variab...

      Logistic models with a random intercept are useful to analyze longitudinal binary data. Traditionally, the random intercept of the logistic model is assumed to be parametric (such as normal distribution) and is also assumed to be independent to variables. Such assumptions are very strong and restricted for application to real data. Recently, Garcia and Ma (2015) derived semiparametric efficient estimators for logistic model with a random intercept without these assumptions. Their estimator shows the consistency where we do not assume any parametric form for the random intercept. In addition, the method is computationally simple. In this paper, we apply this method to analyze toenail infection data. We compare the semiparametric estimator with maximum likelihood estimator, penalized quasi-likelihood estimator and hierarchical generalized linear estimator.

      더보기

      참고문헌 (Reference)

      1 Hausman, J. A., "Specification tests in econometrics" 46 : 1251-1271, 1978

      2 Tsiatis, A. A., "Semiparametric Theory and Missing Data" Springer 2006

      3 Neumann, C. G., "School snacks decrease morbidity in Kenyan schoolchildren: A cluster randomized, controlled feeding intervention trial" 16 : 1593-1604, 2013

      4 Skrondal, A., "Prediction in multilevel generalized linear models" 172 : 659-687, 2009

      5 Jang, W., "PQL estimation biases in generalized linear mixed models" Institute of Statistics and Decision Sciences, Duke University Springer-Verlag 5-21, 2006

      6 Garcia, T. P., "Optimal estimator for logistic model with distribution-free random intercept" 2015

      7 Weiss, R. E., "Modeling Longitudinal Data" Springer-Verlag 2005

      8 Raudenbush, S. W, "Hierarchical Linear Models" Sage Publications 2002

      9 Schall, R., "Estimation in generalized linear models with random effects" 78 : 719-727, 1991

      10 Newey, W., "Efficient estimation of linear and type I censored regression models under conditional quantile restrictions" 6 : 295-317, 1990

      1 Hausman, J. A., "Specification tests in econometrics" 46 : 1251-1271, 1978

      2 Tsiatis, A. A., "Semiparametric Theory and Missing Data" Springer 2006

      3 Neumann, C. G., "School snacks decrease morbidity in Kenyan schoolchildren: A cluster randomized, controlled feeding intervention trial" 16 : 1593-1604, 2013

      4 Skrondal, A., "Prediction in multilevel generalized linear models" 172 : 659-687, 2009

      5 Jang, W., "PQL estimation biases in generalized linear mixed models" Institute of Statistics and Decision Sciences, Duke University Springer-Verlag 5-21, 2006

      6 Garcia, T. P., "Optimal estimator for logistic model with distribution-free random intercept" 2015

      7 Weiss, R. E., "Modeling Longitudinal Data" Springer-Verlag 2005

      8 Raudenbush, S. W, "Hierarchical Linear Models" Sage Publications 2002

      9 Schall, R., "Estimation in generalized linear models with random effects" 78 : 719-727, 1991

      10 Newey, W., "Efficient estimation of linear and type I censored regression models under conditional quantile restrictions" 6 : 295-317, 1990

      11 Bickel, P. J., "Efficient and Adaptive Estimation for Semiparametric Models" The Johns Hopkins University Press 1993

      12 Breslow, N. E, "Approximate inference in generalized linear mixed models" 88 : 9-25, 1993

      13 Neumann, C. G., "Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan school children: background, study design and baseline findings" 133 : 3941S-3949S, 2003

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.38 0.38 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.35 0.34 0.565 0.17
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼