RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Eigenvalue Gap의 Ratio를 이용한 신호 개수 추정 방법 및 Rayleigh Fading 환경에서의 신호 개수 추정 성능 비교 = Source Enumeration Method using Eigenvalue Gap Ratio and Performance Comparison in Rayleigh Fading

      한글로보기

      https://www.riss.kr/link?id=A107876091

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In electronic warfare, source enumeration and direction-of-arrival estimation are important. The source enumeration method based on eigenvalues of covariance matrix from received is one of the most used methods. However, there are some drawbacks such as accuracy less than 100 % at high SNR, poor performance at low SNR and reduction of maximum number of estimating sources. We suggested new method based on eigenvalues gaps, which is named AREG(Accumulated Ratio of Eigenvalues Gaps). Meanwhile, FGML(Fast Gridless Maximum Likelihood) which reconstructs the covariance matrix was suggested by Wu et al., and it improves performance of the existing source enumeration methods without modification of algorithms. In this paper, first, we combine AREG with FGML to improve the performance. Second, we compare the performance of source enumeration and direction-of-arrival estimation methods in Rayleigh fading. Third, we suggest new method named REG(Ratio of Eigenvalues Gaps) to reduce performance degradation in Rayleigh Fading environment of AREG.
      번역하기

      In electronic warfare, source enumeration and direction-of-arrival estimation are important. The source enumeration method based on eigenvalues of covariance matrix from received is one of the most used methods. However, there are some drawbacks such ...

      In electronic warfare, source enumeration and direction-of-arrival estimation are important. The source enumeration method based on eigenvalues of covariance matrix from received is one of the most used methods. However, there are some drawbacks such as accuracy less than 100 % at high SNR, poor performance at low SNR and reduction of maximum number of estimating sources. We suggested new method based on eigenvalues gaps, which is named AREG(Accumulated Ratio of Eigenvalues Gaps). Meanwhile, FGML(Fast Gridless Maximum Likelihood) which reconstructs the covariance matrix was suggested by Wu et al., and it improves performance of the existing source enumeration methods without modification of algorithms. In this paper, first, we combine AREG with FGML to improve the performance. Second, we compare the performance of source enumeration and direction-of-arrival estimation methods in Rayleigh fading. Third, we suggest new method named REG(Ratio of Eigenvalues Gaps) to reduce performance degradation in Rayleigh Fading environment of AREG.

      더보기

      참고문헌 (Reference)

      1 진희철, "지상용 전자전장비의 방향 탐지 프로세스 개선을 통한 정확도 향상에 관한 연구" 한국산학기술학회 18 (18): 627-635, 2017

      2 Q. Pan, "Source Enumeration based on a Uniform Circular Array in a Determined Case" 68 (68): 700-712, 2019

      3 Y. Lee, "Source Enumeration Approaches using Eigenvalue Gaps and Machine Learning based Threshold for Direction-of-Arrival Estimation" 11 (11): 1942-, 2021

      4 L. Huang, "Reduced-Rank MDL Method for Source Enumeration in High-Resolution Array Processing" 55 (55): 5658-5667, 2007

      5 J. Jeong, "Performance of MUSIC and ESPRIT for Joint Estimation of DOA and Angular Spread in Slow Fading Environment" E85-B (E85-B): 972-977, 2002

      6 H. Trees, "Optimum Array Processing - Detection, Estimation, and Modulation Theory" John Wiley &Sons, Inc 827-841, 2002

      7 A. Liavas, "On the Behavior of Information Theoretic Criteria for Model Order Selection" 49 (49): 1689-1695, 2001

      8 T. Shan, "On Spatial Smoothing for Direction-of-Arrival Estimation of Coherent Signals" 33 (33): 806-811, 1985

      9 S. Beheshti, "Number of Source Signal Estimation by the Mean Squared Eigenvalue Error" 66 (66): 5694-5704, 2018

      10 P. Pal, "Nested Arrays : A Novel Approach to Array Processing with Enhanced Degrees of Freedom" 58 (58): 4167-4181, 2010

      1 진희철, "지상용 전자전장비의 방향 탐지 프로세스 개선을 통한 정확도 향상에 관한 연구" 한국산학기술학회 18 (18): 627-635, 2017

      2 Q. Pan, "Source Enumeration based on a Uniform Circular Array in a Determined Case" 68 (68): 700-712, 2019

      3 Y. Lee, "Source Enumeration Approaches using Eigenvalue Gaps and Machine Learning based Threshold for Direction-of-Arrival Estimation" 11 (11): 1942-, 2021

      4 L. Huang, "Reduced-Rank MDL Method for Source Enumeration in High-Resolution Array Processing" 55 (55): 5658-5667, 2007

      5 J. Jeong, "Performance of MUSIC and ESPRIT for Joint Estimation of DOA and Angular Spread in Slow Fading Environment" E85-B (E85-B): 972-977, 2002

      6 H. Trees, "Optimum Array Processing - Detection, Estimation, and Modulation Theory" John Wiley &Sons, Inc 827-841, 2002

      7 A. Liavas, "On the Behavior of Information Theoretic Criteria for Model Order Selection" 49 (49): 1689-1695, 2001

      8 T. Shan, "On Spatial Smoothing for Direction-of-Arrival Estimation of Coherent Signals" 33 (33): 806-811, 1985

      9 S. Beheshti, "Number of Source Signal Estimation by the Mean Squared Eigenvalue Error" 66 (66): 5694-5704, 2018

      10 P. Pal, "Nested Arrays : A Novel Approach to Array Processing with Enhanced Degrees of Freedom" 58 (58): 4167-4181, 2010

      11 R. Schmidt, "Multiple Emitter Location and Signal Parameter Estimation" 34 (34): 276-280, 1986

      12 M. Morency, "Joint Detection and Localization of an Unknown Number of Sources using the Algebraic Structure of the Noise Subspace" 66 (66): 4685-4700, 2018

      13 Z. Chen, "Introduction to Direction-of-Arrival Estimation" Artech House 31-92, 2010

      14 A. Barabell, "Improving the Resolution Performance of Eigenstructure-based Direction-Finding Algorithms" 8 : 336-339, 1983

      15 K. Han, "Improved Source Number Detection and Direction Estimation with Nested Arrays and ULAs using Jackknifing" 61 (61): 6118-6128, 2013

      16 P. Chevalier, "High-Resolution Direction Finding from Higher Oder Statistics-The 2q-MUSIC" 54 (54): 2986-2997, 2006

      17 S. Schell, "High-Resolution Direction Finding" 10 : 755-817, 1993

      18 K. Xu, "High-Accuracy Signal Subspace Separation Algorithm based on Gaussian Kernel Soft Partition" 66 (66): 491-499, 2019

      19 E. Fishler, "Estimation of the Number of Sources in Unbalanced Arrays via Information Theoretic Criteria" 53 (53): 3543-3553, 2005

      20 A. Badawy, "Estimating the Number of Sources in White Gaussian Noise: Simple Eigenvalues based Approaches" 11 (11): 669-673, 2017

      21 D. Adamy, "EW Against a New Generationof Threats:EW 104" GIST Press 9-39, 2020

      22 R. Roy, "ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques" 37 (37): 984-995, 1989

      23 J. Proakis, "Digital Communications" McGraw-Hill 830-843, 2007

      24 M. Wax, "Detection of Signals by Information Theoretic Criteria" 33 (33): 387-392, 1998

      25 O. Hu, "Detecting the Number of Signals using Antenna Array: A Single Threshold Solution" 905-908, 1999

      26 Z. He, "Detecting the Number of Clusters in n-Way Probabilistic Clustering" 32 (32): 2006-2021, 2010

      27 F. Yan, "Computationally Efficient Direction of Arrival Estimation with Unknown Number of Signals" 78 : 175-184, 2018

      28 M. Grant, "CVX: Matlab Software for Disciplined Vonvex Programming"

      29 Z. Zhu, "Automatic Modulation Classification - Principles, Algorithms and Applications" John Wiley & Sons, Inc 144-150, 2015

      30 X. Wu, "A Fast Gridless Covariance Matrix Reconstruction Method for Oneand Two-Dimensional Direction-of-Arrival Estimation" 17 (17): 4916-4927, 2017

      31 P. Chen, "A Comparative Study of Model Selection Criteria for the Number of Signals" 2 (2): 180-188, 2008

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재후보2차) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.13 0.13 0.1
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.09 0.09 0.244 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼