RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Unusual strain-dependent thermal conductivity modulation of silver nanoflower-polyurethane fibers

      한글로보기

      https://www.riss.kr/link?id=A107456840

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Thermal management of stretchable and wearable electronic devices is an important issue in enhancing performance, reliability, and human thermal comfort. Here, we constructed a unique experimental setup which investigated the strain-dependent...

      <P>Thermal management of stretchable and wearable electronic devices is an important issue in enhancing performance, reliability, and human thermal comfort. Here, we constructed a unique experimental setup which investigated the strain-dependent thermal conductivity. The thermal conductivity of flower-shaped silver nanoparticle (silver nanoflower)-polyurethane (Ag-PU) composite fibers was systematically investigated as a function of strain. The strain-dependent temperature distribution of the Joule-heated fiber was measured using an infrared camera, and the thermal conductivity was obtained from the 1-dimensional Fourier's conduction model. There was a monotonic decrease in both lattice and electronic thermal conductivity with stretching at 25 °C. However, there was an initial increase in lattice and total thermal conductivity in the low strain region (@@<@@10%), when the fiber was stretched at 45 °C, although the electronic thermal conductivity decreased monotonically. The softening of the polymer at increased temperatures enhanced Poisson's ratio. Resultantly, the fiber cross-sectional area and radial-direction inter-particle distance between silver nanoflowers decreased. This could increase the thermal transport in conductive fibers by modulating the interfaces between silver nanoflowers and polyurethane. A further stretching decreased the lattice thermal conductivity due to the significantly increased axial distance between silver nanoflowers and the decreased filler fraction. The weft-knitted fabric also demonstrated an increased thermal conductance in the low strain region (≤30%) at 45 °C.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼