RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Resource Allocation in Wireless Networks with Federated Learning: Network Adaptability and Learning Acceleration

      한글로보기

      https://www.riss.kr/link?id=A108081627

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Deep reinforcement learning can effectively address resource allocation in wireless networks. However, its learning speed may be slower in more complex networks and a new policy should be learned for a newly-arrived system due to a lack of network ada...

      Deep reinforcement learning can effectively address resource allocation in wireless networks. However, its learning speed may be slower in more complex networks and a new policy should be learned for a newly-arrived system due to a lack of network adaptability. To address these issues, we propose a federated learning framework for resource allocation in wireless networks with multiple systems. It accelerates the learning speed by aggregating the policy at each system into a central policy and ensures network adaptability by using the central policy. Through experiments, we demonstrate that our proposed framework achieves both learning acceleration and network adaptability.

      더보기

      참고문헌 (Reference)

      1 K.B. Letaief, "The roadmap to 6G: AI empowered wireless networks" 57 (57): 84-90, 2019

      2 H.-S. Lee, "Resource allocation in wireless networks with deep reinforcement learning: A circumstance-independent approach" 14 (14): 2589-2592, 2020

      3 H.H. Zhuo, "Lin, Federated deep reinforcement learning"

      4 F. Al-Tam, "Learn to schedule (LEASCH):A deep reinforcement learning approach for radio resource scheduling in the 5G MAC layer" 8 : 108088-108101, 2020

      5 W. Shi, "Joint device scheduling and resource allocation for latency constrained wireless federated learning" 20 (20): 453-467, 2021

      6 V. Mnih, "Human-level control through deep reinforcement learning" 518 (518): 529-533, 2015

      7 C.T. Dinh, "Federated learning over wireless networks:Convergence analysis and resource allocation" 29 (29): 398-409, 2021

      8 N. Zhao, "Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks" 18 (18): 5141-5152, 2019

      9 O. Naparstek, "Deep multi-user reinforcement learning for distributed dynamic spectrum access" 18 (18): 310-323, 2019

      10 S. Wang, "Content-based vehicle selection and resource allocation for federated learning in iov" 2021

      1 K.B. Letaief, "The roadmap to 6G: AI empowered wireless networks" 57 (57): 84-90, 2019

      2 H.-S. Lee, "Resource allocation in wireless networks with deep reinforcement learning: A circumstance-independent approach" 14 (14): 2589-2592, 2020

      3 H.H. Zhuo, "Lin, Federated deep reinforcement learning"

      4 F. Al-Tam, "Learn to schedule (LEASCH):A deep reinforcement learning approach for radio resource scheduling in the 5G MAC layer" 8 : 108088-108101, 2020

      5 W. Shi, "Joint device scheduling and resource allocation for latency constrained wireless federated learning" 20 (20): 453-467, 2021

      6 V. Mnih, "Human-level control through deep reinforcement learning" 518 (518): 529-533, 2015

      7 C.T. Dinh, "Federated learning over wireless networks:Convergence analysis and resource allocation" 29 (29): 398-409, 2021

      8 N. Zhao, "Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks" 18 (18): 5141-5152, 2019

      9 O. Naparstek, "Deep multi-user reinforcement learning for distributed dynamic spectrum access" 18 (18): 310-323, 2019

      10 S. Wang, "Content-based vehicle selection and resource allocation for federated learning in iov" 2021

      11 J. Xu, "Client selection and bandwidth allocation in wireless federated learning networks: A long-term perspective" 20 (20): 1188-1200, 2021

      12 H.-S. Lee, "Adaptive transmission scheduling in wireless networks for asynchronous federated learning" 39 (39): 3673-3687, 2021

      13 J. Fan, "A theoretical analysis of deep Qlearning" 486-489, 2020

      14 C. Fiandrino, "A machinelearning-based framework for optimizing the operation of future networks" 58 (58): 20-25, 2020

      15 M. Chen, "A joint learning and communications framework for federated learning over wireless networks" 20 (20): 269-283, 2021

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-08-01 평가 SCOPUS 등재 (기타) KCI등재
      2017-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼