RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      평블록 조립 공정에 대한 강화학습 기반 스케줄링 알고리즘 개발

      한글로보기

      https://www.riss.kr/link?id=A107620535

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Rule-based heuristic algorithms and meta-heuristic algorithms have been studied to solve the scheduling problems of production systems. In recent research, reinforcement learning-based adaptive scheduling algorithms have been studied to solve complex problems with high-dimensional and vast state space. A production system in shipyards is a high-variable system where various production factors such as space, workforce, and resources are related. Adaptive scheduling according to the changes in the production system and surrounding environment must be performed in shipyards. In this paper, the main focus was on building a basic reinforcement learning model for scheduling problems of shipyards. A simplified model of the panel block shop in shipyards was assumed and the optimal policy for determining the input sequence of blocks was learned to reduce the flow time. The open source-based DES simulation kernel Simpy was incorporated into the environment of the reinforcement learning model.
      번역하기

      Rule-based heuristic algorithms and meta-heuristic algorithms have been studied to solve the scheduling problems of production systems. In recent research, reinforcement learning-based adaptive scheduling algorithms have been studied to solve complex ...

      Rule-based heuristic algorithms and meta-heuristic algorithms have been studied to solve the scheduling problems of production systems. In recent research, reinforcement learning-based adaptive scheduling algorithms have been studied to solve complex problems with high-dimensional and vast state space. A production system in shipyards is a high-variable system where various production factors such as space, workforce, and resources are related. Adaptive scheduling according to the changes in the production system and surrounding environment must be performed in shipyards. In this paper, the main focus was on building a basic reinforcement learning model for scheduling problems of shipyards. A simplified model of the panel block shop in shipyards was assumed and the optimal policy for determining the input sequence of blocks was learned to reduce the flow time. The open source-based DES simulation kernel Simpy was incorporated into the environment of the reinforcement learning model.

      더보기

      목차 (Table of Contents)

      • ABSTRACT
      • 1. 서론
      • 2. 강화학습
      • 3. 문제 정의
      • 4. 학습 결과
      • ABSTRACT
      • 1. 서론
      • 2. 강화학습
      • 3. 문제 정의
      • 4. 학습 결과
      • 5. 결론 및 향후 연구
      • References
      더보기

      참고문헌 (Reference)

      1 배희철, "유전자 알고리즘을 활용한 조선 소조립 공정 일정계획" 대한산업공학회 20 (20): 33-40, 2007

      2 황인혁, "시뮬레이티드 어닐링을 활용한 조선 소조립 라인 소일정계획 최적화" 한국시뮬레이션학회 19 (19): 73-82, 2010

      3 곽동훈, "변동성 기반 대기행렬 이론을 이용한 조선 생산계획 및 조달계획 데이터 분석" 대한산업공학회 46 (46): 673-682, 2020

      4 Levin, E., "Using Markov Decision Process for Learning Dialogue Strategies" IEEE 1998

      5 Lee, Y. G., "Simulationbased Planning System for Shipbuilding" 1-16, 2020

      6 Lee, W.J., "Simulation Based Multi-objective Fab Scheduling by Using Reinforcement Learning" IEEE 2019

      7 Van Otterlo, M., "Reinforcement Learning and Markov Decision Processes, Reinforcement Learning" 3-42, 2012

      8 Zhang, T., "Realtime Job Shop Scheduling Based on Simulation and Markov Decision Processes" IEEE 2017

      9 Mnih, V., "Playing Atari with Deep Reinforcement Learning" 2013

      10 Waschneck, B., "Optimization of Global Production Scheduling with Deep Reinforcement Learning" 72 (72): 1264-1269, 2018

      1 배희철, "유전자 알고리즘을 활용한 조선 소조립 공정 일정계획" 대한산업공학회 20 (20): 33-40, 2007

      2 황인혁, "시뮬레이티드 어닐링을 활용한 조선 소조립 라인 소일정계획 최적화" 한국시뮬레이션학회 19 (19): 73-82, 2010

      3 곽동훈, "변동성 기반 대기행렬 이론을 이용한 조선 생산계획 및 조달계획 데이터 분석" 대한산업공학회 46 (46): 673-682, 2020

      4 Levin, E., "Using Markov Decision Process for Learning Dialogue Strategies" IEEE 1998

      5 Lee, Y. G., "Simulationbased Planning System for Shipbuilding" 1-16, 2020

      6 Lee, W.J., "Simulation Based Multi-objective Fab Scheduling by Using Reinforcement Learning" IEEE 2019

      7 Van Otterlo, M., "Reinforcement Learning and Markov Decision Processes, Reinforcement Learning" 3-42, 2012

      8 Zhang, T., "Realtime Job Shop Scheduling Based on Simulation and Markov Decision Processes" IEEE 2017

      9 Mnih, V., "Playing Atari with Deep Reinforcement Learning" 2013

      10 Waschneck, B., "Optimization of Global Production Scheduling with Deep Reinforcement Learning" 72 (72): 1264-1269, 2018

      11 Wang, Y. C., "Learning Policies for Single Machine Job Dispatching" 20 (20): 553-562, 2004

      12 Sutton, R.S., "Introduction to Reinforcement Learning" MIT Press 1998

      13 Woo, S. B., "Heuristic Algorithms for Resource Leveling in Pre-erection Scheduling and Erection Scheduling of Shipbuilding" 16 (16): 332-343, 2003

      14 Kong, L.F., "Dynamic Single Machine Scheduling Using Q-learning Agent" IEEE 2005

      15 Pierreval, H., "Dynamic Scheduling Selection of Dispatching Rules for Manufacturing System" 35 (35): 1575-1591, 1997

      16 Aydin, M. E., "Dynamic Job-shop Scheduling Using Reinforcement Learning Agents" 33 (33): 169-178, 2000

      17 Woo, J. H., "Development of Simulation Framework for Shipbuilding" 31 (31): 210-227, 2018

      18 Van Hasselt, H., "Deep Reinforcement Learning with Double qlearning" 2016

      19 Liu, Z., "Aggregate Production Planning for Shipbuilding with Variation-inventory Trade-offs" 49 (49): 6249-6272, 2011

      20 Gabel, T., "Adaptive Reactive Job-shop Scheduling with Reinforcement Learning Agents" 24 (24): 14-18, 2008

      21 Ðurasević, M., "A Survey of Dispatching Rules for the Dynamic Unrelated Machines Environment" 113 : 555-569, 2018

      22 Deane, R. H., "A Dispatching Methodology for Balancing Workload Assignments in a Job Shop Production Facility" 4 (4): 277-283, 1972

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-06-13 학회명변경 한글명 : 한국CAD/CAM학회 -> 한국CDE학회
      영문명 : Society Of Cadcam Engineers -> Society for Computational Design and Engineering
      KCI등재
      2016-06-13 학술지명변경 한글명 : 한국CAD/CAM학회 논문집 -> 한국CDE학회 논문집
      외국어명 : 미등록 -> Korean Journal of Computational Design and Engineering
      KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-10-04 학술지등록 한글명 : 한국CAD/CAM학회 논문집
      외국어명 : 미등록
      KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.33
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.24 0.553 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼