RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      몬테카를로 시뮬레이션 기반 공동주택 전기자동차 충전수요 예측을 고려한 최대부하 시간 변화 분석

      한글로보기

      https://www.riss.kr/link?id=A107212436

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      The penetration of Electric Vehicles(EV) has been increasing worldwide recently to reduce greenhouse gases(GHG), and the government plans to supply about 3 million EV until 2030. The EV charging pattern is determined by the ToU(Time-of-Use) tariff, and is mainly charged from 18:00 to 23:00, which is the middle load period. The EV charging demand will further increase the power demand for apartments, which surges after 18:00 after returning home, so it is necessary to accurately forecast the EV charging demand pattern. In this paper, we determine the probability variables of input data such as SoC(State-of-Charge), charging start time, and charging method of EV users to forecast the EV charging demand pattern based on Monte Carlo simulation. In addition, the changes in the power demand patterns of the apartment according to the EV charging demand patterns are estimated using the actual data of the apartment power demand pattern. Furthermore, we estimate changes in the pattern of power demand and changes in the peak load time according to the ratio of EVs per household of apartments nationwide.
      번역하기

      The penetration of Electric Vehicles(EV) has been increasing worldwide recently to reduce greenhouse gases(GHG), and the government plans to supply about 3 million EV until 2030. The EV charging pattern is determined by the ToU(Time-of-Use) tariff, an...

      The penetration of Electric Vehicles(EV) has been increasing worldwide recently to reduce greenhouse gases(GHG), and the government plans to supply about 3 million EV until 2030. The EV charging pattern is determined by the ToU(Time-of-Use) tariff, and is mainly charged from 18:00 to 23:00, which is the middle load period. The EV charging demand will further increase the power demand for apartments, which surges after 18:00 after returning home, so it is necessary to accurately forecast the EV charging demand pattern. In this paper, we determine the probability variables of input data such as SoC(State-of-Charge), charging start time, and charging method of EV users to forecast the EV charging demand pattern based on Monte Carlo simulation. In addition, the changes in the power demand patterns of the apartment according to the EV charging demand patterns are estimated using the actual data of the apartment power demand pattern. Furthermore, we estimate changes in the pattern of power demand and changes in the peak load time according to the ratio of EVs per household of apartments nationwide.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. Monte Carlo Simulation 기법 기반의 EV 일 충전수요 패턴 예측
      • 3. Monte Carlo Simulation 기법 기반 공동주택 EV 일 충전수요 패턴 예측 결과
      • 4. 결론
      • Abstract
      • 1. 서론
      • 2. Monte Carlo Simulation 기법 기반의 EV 일 충전수요 패턴 예측
      • 3. Monte Carlo Simulation 기법 기반 공동주택 EV 일 충전수요 패턴 예측 결과
      • 4. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 Korea Petroleum AsSoCiation, "Worldwide Electric Vehicle Distribution Trends" 2018

      2 Seong-U Bae, "Research Trend of Electric Vehicle Charging Power Demand Forecast" 66 (66): 41-49, 2017

      3 Ministry of Trade, Industry and Energy, "Renewable Energy 3020 Implementation Plan"

      4 The Seoul Institute, "Recent Trend of Environmentally Friendly Vehicles and Seoul Policy Direction" 2017

      5 이만희, "OECD 국가의 온실가스 감축공약(NDC)의 비교 분석을 통한 우리나라 온실가스 감축 목표 평가" 한국기후변화학회 8 (8): 313-327, 2017

      6 Wenjun Liao, "Monte Carlo Simulation of Displacement Damage in Graphene" 66 (66): 1730-1731, 2019

      7 KEPCO Economy & Management Research Institute, "Major Contents of Paris Agreement and Power Sector Issues" 2016

      8 Ministry of Trade, Industry and Energy, "Future Automobile Industry Development Strategy" 2019

      9 Zhuowei Luo, "Forecasting charging load of plug-in electric vehicles in China" 2011

      10 Korea Electric Power Corporation, "Electric Price"

      1 Korea Petroleum AsSoCiation, "Worldwide Electric Vehicle Distribution Trends" 2018

      2 Seong-U Bae, "Research Trend of Electric Vehicle Charging Power Demand Forecast" 66 (66): 41-49, 2017

      3 Ministry of Trade, Industry and Energy, "Renewable Energy 3020 Implementation Plan"

      4 The Seoul Institute, "Recent Trend of Environmentally Friendly Vehicles and Seoul Policy Direction" 2017

      5 이만희, "OECD 국가의 온실가스 감축공약(NDC)의 비교 분석을 통한 우리나라 온실가스 감축 목표 평가" 한국기후변화학회 8 (8): 313-327, 2017

      6 Wenjun Liao, "Monte Carlo Simulation of Displacement Damage in Graphene" 66 (66): 1730-1731, 2019

      7 KEPCO Economy & Management Research Institute, "Major Contents of Paris Agreement and Power Sector Issues" 2016

      8 Ministry of Trade, Industry and Energy, "Future Automobile Industry Development Strategy" 2019

      9 Zhuowei Luo, "Forecasting charging load of plug-in electric vehicles in China" 2011

      10 Korea Electric Power Corporation, "Electric Price"

      11 Iain A Macdonald, "Comparison of Sampling Techniques on the Performance of Monte-Carlo Based Sensitivity Analysis" 2009

      12 Ministry of Environment, "A Study on the activation of Electric Vehicle Supply through Survey and Analysis of Actual Purchaser Utilization" 2017

      13 Korea Research Institute for Human Settlements, "A Study on the Mid and Long-Term Real Estate Market Forecast and Policy Measures for Stable Market Management" 2018

      14 Sung-il Shin, "A Study on Demand Prediction of EV Charging Infrastructure In Apartment Complex" The Korean Institute of Illuminating and electrical Installation Engineers 2019

      15 Ministry of Trade, Industry and Energy, "A Reasonable Improvement of the Electricity Price Discount System for 19 Years Sunset"

      16 GUO Chunlin, "A Method of Electric Vehicle Charging Load Forecasting Based on the Number of Vehicles" 2012

      17 Ministry of Trade, Industry and Energy, "A Feasibility Analysis of New Energy Industry Based on Market Water Availability Analysis" 2016

      18 변완희, "2020년 아파트의 전기자동차 수요예측 분석 연구" 한국ITS학회 11 (11): 81-91, 2012

      19 Ministry of Trade, Industry and Energy, "2017 Electric Vehicle Survey Results Report" 2017

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 학술지 통합 (기타) KCI등재
      2001-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.24
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.21 0.19 0.366 0.08
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼