The main objective of this paper is to establish certain explicit expressions for the Humbert functions ${\Phi}_2$(a, a + i ; c ; x, -x) and ${\Psi}_2$(a ; c, c + i ; x, -x) for i = 0, ${\pm}1$, ${\pm}2$, ..., ${\pm}5$. Several new and known summation...
The main objective of this paper is to establish certain explicit expressions for the Humbert functions ${\Phi}_2$(a, a + i ; c ; x, -x) and ${\Psi}_2$(a ; c, c + i ; x, -x) for i = 0, ${\pm}1$, ${\pm}2$, ..., ${\pm}5$. Several new and known summation formulas for ${\Phi}_2$ and ${\Psi}_2$ are considered as special cases of our main identities.