RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      $5\times5$ CNN 하드웨어 및 전.후 처리기 구현 = An Implementation of the $5\times5$ CNN Hardware and the Pre.Post Processor

      한글로보기

      https://www.riss.kr/link?id=A100827253

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The cellular neural networks have shown a vast computing power for the image processing in spite of the simplicity of its structure. However, it is impossible to implement the CNN hardware which would require the same enormous amount of cells as that of the pixels involved in the practical large image. In this parer, the $5\times5$ CNN hardware and the pre post processor which can be used for processing the real large image with a time-multiplexing scheme are implemented. The implemented $5\times5$ CNN hardware and pre post processor is applied to the edge detection of $256\times256$ lena image to evaluate the performance. The total number of block. By the time-multiplexing process is about 4,000 blocks and to control pulses are needed to perform the pipelined operation or the each block. By the experimental resorts, the implemented $5\times5$ CNN hardware and pre post processor can be used to the real large image processing.
      번역하기

      The cellular neural networks have shown a vast computing power for the image processing in spite of the simplicity of its structure. However, it is impossible to implement the CNN hardware which would require the same enormous amount of cells as that ...

      The cellular neural networks have shown a vast computing power for the image processing in spite of the simplicity of its structure. However, it is impossible to implement the CNN hardware which would require the same enormous amount of cells as that of the pixels involved in the practical large image. In this parer, the $5\times5$ CNN hardware and the pre post processor which can be used for processing the real large image with a time-multiplexing scheme are implemented. The implemented $5\times5$ CNN hardware and pre post processor is applied to the edge detection of $256\times256$ lena image to evaluate the performance. The total number of block. By the time-multiplexing process is about 4,000 blocks and to control pulses are needed to perform the pipelined operation or the each block. By the experimental resorts, the implemented $5\times5$ CNN hardware and pre post processor can be used to the real large image processing.

      더보기

      국문 초록 (Abstract)

      셀룰러 신경회로망(Cellular Neural Networks: CNN)은 그 구조가 간단함에도 불구하고 강력한 연산능력을 가지고 있어 영상처리에 이용되어 왔다. 그러나 실제의 대규모 영상에 포함된 화소의 양과 같은 막대한 셀들을 필요로 하는 CNN하드웨어를 구현하는 것은 불가능하다. 본 논문에서는 시 다중화 처리 기법으로 대규모 실영상을 처리할 수 있는 $5\times5$ CNN 하드웨어와 전 후 처리기를 구현하였다. 구현된 $5\times5$ CNN 하드웨어와 전 후 처리기의 성능을 평가하기 위해 $ 레나영상에 대해 윤곽선 검출을 수행하였으며, 약 4,000번의 시다중화 블록처리와 각 블록 마다 10번의 제어 펄스에 의한 파이프라인 동작에 의해 영상처리가 수행되었다. 따라서 본 논문에서 구현된 $5\times5$ CNN 하드웨어와 전 후 처리기를 실영상 처리에 이용할 수 있다.
      번역하기

      셀룰러 신경회로망(Cellular Neural Networks: CNN)은 그 구조가 간단함에도 불구하고 강력한 연산능력을 가지고 있어 영상처리에 이용되어 왔다. 그러나 실제의 대규모 영상에 포함된 화소의 양과 ...

      셀룰러 신경회로망(Cellular Neural Networks: CNN)은 그 구조가 간단함에도 불구하고 강력한 연산능력을 가지고 있어 영상처리에 이용되어 왔다. 그러나 실제의 대규모 영상에 포함된 화소의 양과 같은 막대한 셀들을 필요로 하는 CNN하드웨어를 구현하는 것은 불가능하다. 본 논문에서는 시 다중화 처리 기법으로 대규모 실영상을 처리할 수 있는 $5\times5$ CNN 하드웨어와 전 후 처리기를 구현하였다. 구현된 $5\times5$ CNN 하드웨어와 전 후 처리기의 성능을 평가하기 위해 $ 레나영상에 대해 윤곽선 검출을 수행하였으며, 약 4,000번의 시다중화 블록처리와 각 블록 마다 10번의 제어 펄스에 의한 파이프라인 동작에 의해 영상처리가 수행되었다. 따라서 본 논문에서 구현된 $5\times5$ CNN 하드웨어와 전 후 처리기를 실영상 처리에 이용할 수 있다.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼