RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      독후감 텍스트의 토픽모델링 적용에 관한 탐색적 연구 = A Study on the Application of Topic Modeling for the Book Report Text

      한글로보기

      https://www.riss.kr/link?id=A105591002

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      이 연구는 독후감 텍스트의 주제분석에 토픽모델링의 활용방안을 탐색하는 것을 목적으로 하고 있다. 텍스트의 주제분석 방안으로서 토픽모델링 분석방법을 이해하고, R에서 제공하는 "topicmodels" 패키지의 LDA 함수를 사용하여 23건의 사례 독후감 텍스트들을 대상으로 실제의 분석작업을 수행하였다 토픽모델링 분석결과 16개의 토픽들을 추출하였고 토픽과 구성 단어들의 관계에서 토픽 네트워크 사례 독후감과 토픽들의 관계에서 독후감 네트워크를 구성하였다. 이후 토픽 네트워크와 독후감 네트워크를 대상으로 중심성 분석을 수행하였으며 분석결과는 다음과 같다. 첫째 16개의 토픽들이 1개의 컴포넌트를 가지는 네트워크로 나타났다. 이것은 16개 토픽들이 상호 연관되어 있다는 것을 의미한다. 둘째, 독후감 네트워크에서는 연결정도 중심성이 높은 독후감들과 낮은 독후감들로 구분이 되었다. 전자의 독후감들은 다른 독후감들과 주제적으로 유사성을 가지며 후자의 독후감들은 다른 독후감들과 주제적으로 상이성을 가지는 것으로 해석하였다. 토픽모델링의 결과를 네트워크 분석과 결합함으로써 독후감의 주제파악에 유용한 결과들을 얻게 되었다.
      번역하기

      이 연구는 독후감 텍스트의 주제분석에 토픽모델링의 활용방안을 탐색하는 것을 목적으로 하고 있다. 텍스트의 주제분석 방안으로서 토픽모델링 분석방법을 이해하고, R에서 제공하는 "topic...

      이 연구는 독후감 텍스트의 주제분석에 토픽모델링의 활용방안을 탐색하는 것을 목적으로 하고 있다. 텍스트의 주제분석 방안으로서 토픽모델링 분석방법을 이해하고, R에서 제공하는 "topicmodels" 패키지의 LDA 함수를 사용하여 23건의 사례 독후감 텍스트들을 대상으로 실제의 분석작업을 수행하였다 토픽모델링 분석결과 16개의 토픽들을 추출하였고 토픽과 구성 단어들의 관계에서 토픽 네트워크 사례 독후감과 토픽들의 관계에서 독후감 네트워크를 구성하였다. 이후 토픽 네트워크와 독후감 네트워크를 대상으로 중심성 분석을 수행하였으며 분석결과는 다음과 같다. 첫째 16개의 토픽들이 1개의 컴포넌트를 가지는 네트워크로 나타났다. 이것은 16개 토픽들이 상호 연관되어 있다는 것을 의미한다. 둘째, 독후감 네트워크에서는 연결정도 중심성이 높은 독후감들과 낮은 독후감들로 구분이 되었다. 전자의 독후감들은 다른 독후감들과 주제적으로 유사성을 가지며 후자의 독후감들은 다른 독후감들과 주제적으로 상이성을 가지는 것으로 해석하였다. 토픽모델링의 결과를 네트워크 분석과 결합함으로써 독후감의 주제파악에 유용한 결과들을 얻게 되었다.

      더보기

      다국어 초록 (Multilingual Abstract)

      The purpose of this study is to explore application of topic modeling for topic analysis of book report. Topic modeling can be understood as one method of topic analysis. This analysis was conducted with texts in 23 book reports using LDA function of the "topicmodels" package provided by R. According to the result of topic modeling, 16 topics were extracted. The topic network was constructed by the relation between the topics and keywords, and the book report network was constructed by the relation between book report cases and topics. Next, Centrality analysis was conducted targeting the topic network and book report network. The result of this study is following these. First, 16 topics are shown as network which has one component. In other words, 16 topics are interrelated. Second, book report was divided into 2 groups, book reports with high centrality and book reports with low centrality. The former group has similarities with others, the latter group has differences with others in aspect of the topics of book reports. The result of topic modeling is useful to identify book reports' topics combining with network analysis.
      번역하기

      The purpose of this study is to explore application of topic modeling for topic analysis of book report. Topic modeling can be understood as one method of topic analysis. This analysis was conducted with texts in 23 book reports using LDA function of ...

      The purpose of this study is to explore application of topic modeling for topic analysis of book report. Topic modeling can be understood as one method of topic analysis. This analysis was conducted with texts in 23 book reports using LDA function of the "topicmodels" package provided by R. According to the result of topic modeling, 16 topics were extracted. The topic network was constructed by the relation between the topics and keywords, and the book report network was constructed by the relation between book report cases and topics. Next, Centrality analysis was conducted targeting the topic network and book report network. The result of this study is following these. First, 16 topics are shown as network which has one component. In other words, 16 topics are interrelated. Second, book report was divided into 2 groups, book reports with high centrality and book reports with low centrality. The former group has similarities with others, the latter group has differences with others in aspect of the topics of book reports. The result of topic modeling is useful to identify book reports' topics combining with network analysis.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼