RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      A comparison of machine learning algorithms for diabetes prediction

      한글로보기

      https://www.riss.kr/link?id=A108002732

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Diabetes is a disease that has no permanent cure; hence early detection is required. Data mining, machine learning (ML) algorithms, and Neural Network (NN) methods are used in diabetes prediction in our research. We used the Pima Indian Diabetes (PID) dataset for our research, collected from the UCI Machine Learning Repository. The dataset contains information about 768 patients and their corresponding nine unique attributes. We used seven ML algorithms on the dataset to predict diabetes. We found that the model with Logistic Regression (LR) and Support Vector Machine (SVM) works well on diabetes prediction. We built the NN model with a different hidden layer with various epochs and observed the NN with two hidden layers provided 88.6% accuracy.
      번역하기

      Diabetes is a disease that has no permanent cure; hence early detection is required. Data mining, machine learning (ML) algorithms, and Neural Network (NN) methods are used in diabetes prediction in our research. We used the Pima Indian Diabetes (PID)...

      Diabetes is a disease that has no permanent cure; hence early detection is required. Data mining, machine learning (ML) algorithms, and Neural Network (NN) methods are used in diabetes prediction in our research. We used the Pima Indian Diabetes (PID) dataset for our research, collected from the UCI Machine Learning Repository. The dataset contains information about 768 patients and their corresponding nine unique attributes. We used seven ML algorithms on the dataset to predict diabetes. We found that the model with Logistic Regression (LR) and Support Vector Machine (SVM) works well on diabetes prediction. We built the NN model with a different hidden layer with various epochs and observed the NN with two hidden layers provided 88.6% accuracy.

      더보기

      참고문헌 (Reference)

      1 "https://www.who.int/health-topics/diabetes"

      2 "https://www.webmd.com/diabetes/diabetes-causes"

      3 "https://www.niddk.nih.gov/healthinformation/diabetes/overview/sympto ms-causes"

      4 "https://www.medicalnewstoday.com/articles/325018#how-is-the-pancre as-linked-with-diabetes"

      5 "https://www.mayoclinic.org/diseases-conditions/prediabetes/diagnosis-t reatment/drc-20355284"

      6 "https://www.healthgrades.com/right-care/diabetes/is-there-a-cure-for-di abetes"

      7 "https://www.diabetes.co.uk/diabetes_care/blood-sugar-level-ranges.html"

      8 "https://www.cdc.gov/obesity/adult/defining.html"

      9 "https://www.cdc.gov/diabetes/basics/prediabetes.html"

      10 "https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/dia betes-long-term-effects"

      1 "https://www.who.int/health-topics/diabetes"

      2 "https://www.webmd.com/diabetes/diabetes-causes"

      3 "https://www.niddk.nih.gov/healthinformation/diabetes/overview/sympto ms-causes"

      4 "https://www.medicalnewstoday.com/articles/325018#how-is-the-pancre as-linked-with-diabetes"

      5 "https://www.mayoclinic.org/diseases-conditions/prediabetes/diagnosis-t reatment/drc-20355284"

      6 "https://www.healthgrades.com/right-care/diabetes/is-there-a-cure-for-di abetes"

      7 "https://www.diabetes.co.uk/diabetes_care/blood-sugar-level-ranges.html"

      8 "https://www.cdc.gov/obesity/adult/defining.html"

      9 "https://www.cdc.gov/diabetes/basics/prediabetes.html"

      10 "https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/dia betes-long-term-effects"

      11 "https://en.wikipedia.org/wiki/Project_Jupyter"

      12 "https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificialintelligence-machine-learning-deep-learning-ai/"

      13 S.R. Garner, "Weka: The Waikato environment for knowledge analysis" 57-64, 1995

      14 M.W. Craven, "Using neural networks for data mining" 13 (13): 211-229, 1997

      15 S. A. Kaveeshwar, "The current state of diabetes mellitus in India" 7 (7): 45-, 2014

      16 D. Sisodia, "Prediction of diabetes using classification algorithms" 132 : 1578-1585, 2018

      17 N.P. Tigga, "Predicting type 2 Diabetes using Logistic Regression accepted to publish in: Lecture Notes of Electrical Engineering" Springer

      18 Q. Zou, "Predicting Diabetes Mellitus with Machine Learning Techniques" 9 : 515-, 2018

      19 S. Perveen, "Performance analysis of data mining classification techniques to predict diabetes" 82 : 115-121, 2016

      20 J. Chaki, "Machine learning and artificial intelligence-based diabetes mellitus detection and self-management: A systematic review" 2020

      21 T. M. Alam, "Informatics in medicine unlocked a model for early prediction of diabetes" 16 : 100204-, 2019

      22 Salim Amour Diwani, "Diabetes forecasting using supervised learning techniques" 10-18, 2014

      23 Swapna G., "Diabetes detection using deep learning algorithms" 한국통신학회 4 (4): 243-246, 2018

      24 H. Benhar, "Data preprocessing for decision making in medical informatics: potential and analysis" 1208-1218, 2018

      25 Cheng-Lung Huang, "Credit scoring with a data mining approach based on support vector machines" Elsevier BV 33 (33): 847-856, 2007

      26 M. Lichman, "Center for machine learning and intelligent systems : UCI Machine Learning repository"

      27 I. Contreras, "Artificial intelligence for diabetes management and decision support: Literature review" 20 (20): e10775-, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-08-01 평가 SCOPUS 등재 (기타) KCI등재
      2017-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼