RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Design and Performance of an Automated Bioreactor for Cell Culture Experiments in a Microgravity Environment

        Kim, Youn-Kyu,Park, Seul-Hyun,Lee, Joo-Hee,Choi, Gi-Hyuk The Korean Space Science Society 2015 Journal of Astronomy and Space Sciences Vol.32 No.1

        In this paper, we describe the development of a bioreactor for a cell-culture experiment on the International Space Station (ISS). The bioreactor is an experimental device for culturing mouse muscle cells in a microgravity environment. The purpose of the experiment was to assess the impact of microgravity on the muscles to address the possibility of long-term human residence in space. After investigation of previously developed bioreactors, and analysis of the requirements for microgravity cell culture experiments, a bioreactor design is herein proposed that is able to automatically culture 32 samples simultaneously. This reactor design is capable of automatic control of temperature, humidity, and culture-medium injection rate; and satisfies the interface requirements of the ISS. Since bioreactors are vulnerable to cell contamination, the medium-circulation modules were designed to be a completely replaceable, in order to reuse the bioreactor after each experiment. The bioreactor control system is designed to circulate culture media to 32 culture chambers at a maximum speed of 1 ml/min, to maintain the temperature of the reactor at $36{\pm}1^{\circ}C$, and to keep the relative humidity of the reactor above 70%. Because bubbles in the culture media negatively affect cell culture, a de-bubbler unit was provided to eliminate such bubbles. A working model of the reactor was built according to the new design, to verify its performance, and was used to perform a cell culture experiment that confirmed the feasibility of this device.

      • Korea Pathfinder Lunar Orbiter Flight Dynamics Simulation and Rehearsal Results for Its Operational Readiness Checkout

        Song, Young-Joo,Bae, Jonghee,Hong, SeungBum,Bang, Jun The Korean Space Science Society 2022 Journal of astronomy and space sciences Vol.39 No.4

        Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was successfully launched on 4 Aug. from Cape Canaveral Space Force Station using a Space-X Falcon-9 rocket. Flight dynamics (FD) operational readiness was one of the critical parts to be checked before the flight. To demonstrate FD software's readiness and enhance the operator's contingency response capabilities, KPLO FD specialists planned, organized, and conducted four simulations and two rehearsals before the KPLO launch. For the efficiency and integrity of FD simulation and rehearsal, different sets of blind test data were prepared, including the simulated tracking measurements that incorporated dynamical model errors, maneuver execution errors, and other errors associated with a tracking system. This paper presents the simulation and rehearsal results with lessons learned for the KPLO FD operational readiness checkout. As a result, every functionality of FD operation systems is firmly secured based on the operation procedure with an enhancement of contingency operational response capability. After conducting several simulations and rehearsals, KPLO FD specialists were much more confident in the flight teams' ability to overcome the challenges in a realistic flight and FD software's reliability in flying the KPLO. Moreover, the results of this work will provide numerous insights to the FD experts willing to prepare deep space flight operations.

      • SCOPUSKCI등재

        Creating and Transforming a Second-Rank Antisymmetric Field-Strength Tensor F<sup>α</sup><sup>β</sup> in Minkowski Space using MATHEMATICA

        Kim, Bogyeong,Yun, Hee-Joong The Korean Space Science Society 2020 Journal of Astronomy and Space Sciences Vol.37 No.2

        As the laws of physics are expressed in a manner that makes their invariance under coordinate transformations manifest, they should be written in terms of tensors. Furthermore, tensors make manifest the characteristics and behaviors of electromagnetic fields through inhomogeneous, anisotropic, and compressible media. Electromagnetic fields are expressed completely in tensor form, F<sup>αβ</sup>, which implies both electric field ${\overrightarrow{E}}$ and magnetic field ${\overrightarrow{B}}$ rather than separately in the vector fields. This study presents the Mathematica platform that generates and transforms a second-rank antisymmetric field-strength tensor F<sup>αβ</sup> and whiskbroom pattern in Minkowski space. The platforms enhance the capabilities of students and researchers in tensor analysis and improves comprehension of the elegant features of complete structure in physics.

      • SCOPUSKCI등재

        Statistical Properties of Geomagnetic Activity Indices and Solar Wind Parameters

        Kim, Jung-Hee,Chang, Heon-Young The Korean Space Science Society 2014 Journal of Astronomy and Space Sciences Vol.31 No.2

        As the prediction of geomagnetic storms is becoming an important and practical problem, conditions in the Earth's magnetosphere have been studied rigorously in terms of those in the interplanetary space. Another approach to space weather forecast is to deal with it as a probabilistic geomagnetic storm forecasting problem. In this study, we carry out detailed statistical analysis of solar wind parameters and geomagnetic indices examining the dependence of the distribution on the solar cycle and annual variations. Our main findings are as follows: (1) The distribution of parameters obtained via the superimposed epoch method follows the Gaussian distribution. (2) When solar activity is at its maximum the mean value of the distribution is shifted to the direction indicating the intense environment. Furthermore, the width of the distribution becomes wider at its maximum than at its minimum so that more extreme case can be expected. (3) The distribution of some certain heliospheric parameters is less sensitive to the phase of the solar cycle and annual variations. (4) The distribution of the eastward component of the interplanetary electric field BV and the solar wind driving function BV2, however, appears to be all dependent on the solar maximum/minimum, the descending/ascending phases of the solar cycle and the equinoxes/solstices. (5) The distribution of the AE index and the Dst index shares statistical features closely with BV and $BV^2$ compared with other heliospheric parameters. In this sense, BV and $BV^2$ are more robust proxies of the geomagnetic storm. We conclude by pointing out that our results allow us to step forward in providing the occurrence probability of geomagnetic storms for space weather and physical modeling.

      • SCOPUSKCI등재

        Lunar Pit Craters Presumed to be the Entrances of Lava Caves by Analogy to the Earth Lava Tube Pits

        Hong, Ik-Seon,Yi, Yu,Kim, Eojin The Korean Space Science Society 2014 Journal of Astronomy and Space Sciences Vol.31 No.2

        Lava caves could be useful as outposts for the human exploration of the Moon. Lava caves or lava tubes are formed when the external surface of the lava flows cools more quickly to make a hardened crust over subsurface lava flows. The lava flow eventually ceases and drains out of the tube, leaving an empty space. The frail part of the ceiling of lava tube could collapse to expose the entrance to the lava tubes which is called a pit crater. Several pit craters with the diameter of around 100 meters have been found by analyzing the data of SELENE and LRO lunar missions. It is hard to use these pit craters for outposts since these are too large in scale. In this study, small scale pit craters which are fit for outposts have been investigated using the NAC image data of LROC. Several topographic patterns which are believed to be lunar caves have been found and the similar pit craters of the Earth were compared and analyzed to identify caves. For this analysis, the image data of satellites and aerial photographs are collected and classified to construct a database. Several pit craters analogous to lunar pit craters were derived and a morphological pit crater model was generated using the 3D printer based on this database.

      • SCOPUSKCI등재

        Development of Forecast Algorithm for Coronal Mass Ejection Speed and Arrival Time Based on Propagation Tracking by Interplanetary Scintillation g-Value

        Park, Sa-Rah,Jeon, Ho-Cheol,Kim, Rok-soon,Kim, Jong-Hyeon,Kim, Seung-Jin,Cho, Junghee,Jang, Soojeong The Korean Space Science Society 2020 Journal of Astronomy and Space Sciences Vol.37 No.1

        We have developed an algorithm for tracking coronal mass ejection (CME) propagation that allows us to estimate CME speed and its arrival time at Earth. The algorithm may be used either to forecast the CME's arrival on the day of the forecast or to update the CME tracking information for the next day's forecast. In our case study, we successfully tracked CME propagation using the algorithm based on g-values of interplanetary scintillation (IPS) observation provided by the Institute for Space-Earth Environmental Research (ISEE). We were able to forecast the arrival time (Δt = 0.30 h) and speed (Δv = 20 km/s) of a CME event on October 2, 2000. From the CME-interplanetary CME (ICME) pairs provided by Cane & Richardson (2003), we selected 50 events to evaluate the algorithm's forecast capability. Average errors for arrival time and speed were 11.14 h and 310 km/s, respectively. Results demonstrated that g-values obtained continuously from any single station observation were able to be used as a proxy for CME speed. Therefore, our algorithm may give stable daily forecasts of CME position and speed during propagation in the region of 0.2-1 AU using the IPS g-values, even if IPS velocity observations are insufficient. We expect that this algorithm may be widely accepted for use in space weather forecasting in the near future.

      • SCOPUSKCI등재

        KOMPSAT SATELLITE LAUNCH AND DEPLOYMENT OPERATIONS

        Baek, Myung-Jin,Chang, Young-Keun,Lee, Jin-Ho The Korean Space Science Society 1999 Journal of Astronomy and Space Sciences Vol.16 No.2

        In this paper, KOMPSAT satellite launch and deployment operations are discussed. The U.S. Taurus launch vehicle delivers KOMPSAT satellite into the mission orbit directly. Launch and deployment operations is monitored and controlled by several international ground stations including Korean Ground Station (KGS). After separation from launch vehicle, KOMPSAT spacecraft deploys solar array by on-board autonomous stored commands without ground inter-vention and stabilizes the satellite such that solar arrays point to the sun. Autonomous ground communication is designed for KOMPSAT for the early orbit ground contact. KOMPSAT space-craft has capability of handing contingency situation by on-board fault management design to retry deployment sequence.

      • SCOPUSKCI등재

        A Novel Axial Foldable Mechanism for a Segmented Primary Mirror of Space Telescope

        Thesiya, Dignesh,Srinivas, Arra,Shukla, Piyush The Korean Space Science Society 2015 Journal of Astronomy and Space Sciences Vol.32 No.3

        Future space missions will have larger telescopes in order to look deeper into space while improvising on spatial resolution. The primary mirrors for these telescopes will be so large that using a monolithic mirror will be nearly impossible because of the difficulties associated with its fabrication, transportation, and installation on a launch vehicle. The feasibility of launching these huge mirrors is limited because of their small launch fairing diameter. The aerodynamic shape of the fairing requires a small diameter, but the height of the launch vehicle, which is available for designers to utilize, is larger than the fairing diameter. This paper presents the development of an axial deployment mechanism based on the screw jack principle. The mechanism was designed and developed, and a prototype was constructed in order to demonstrate a lab model.

      • SCOPUSKCI등재

        Space Surveillance Radar Observation Analysis: One-Year Tracking and Orbit Determination Results of KITSAT-1, "우리별 1호"

        Choi, Jin,Jo, Jung Hyun,Choi, Eun-Jung,Yu, Jiwoong,Choi, Byung-Kyu,Kim, Myung-Jin,Yim, Hong-Suh,Roh, Dong-Goo,Kim, Sooyoung,Park, Jang-Hyun,Cho, Sungki The Korean Space Science Society 2020 Journal of Astronomy and Space Sciences Vol.37 No.2

        The Korean Institute of Technology Satellite (KITSAT-1) is the first satellite developed by the Satellite Technology Research Center and the University of Surrey. KITSAT-1 is orbiting the Earth's orbit as space debris with a 1,320 km altitude after the planned mission. Due to its relatively small size and altitude, tracking the KITSAT-1 was a difficult task. In this research, we analyzed the tracking results of KITSAT-1 for one year using the Midland Space Radar (MSR) in Texas and the Poker Flat Incoherent Scatter Radar (PFISR) in Alaska operated by LeoLabs, Inc. The tracking results were analyzed on a weekly basis for MSR and PFISR. The observation was conducted by using both stations at an average frequency of 10 times per week. The overall corrected range measurements for MSR and PFISR by LeoLabs were under 50 m and 25 m, respectively. The ionospheric delay, the dominant error source, was confirmed with the International Reference of Ionosphere-16 model and Global Navigation Satellite System data. The weekly basis orbit determination results were compared with two-line element data. The comparison results were used to confirm the orbital consistency of the estimated orbits.

      • SCOPUSKCI등재

        Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

        Hwang, Jung-A,Lee, Jae-Jin,Cho, Kyung-Suk,Choi, Ho-Sung,Rho, Su-Ryun,Cho, Il-Hyun The Korean Space Science Society 2010 Journal of Astronomy and Space Sciences Vol.27 No.1

        This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is "Developing safety standards and management of space radiation on the polar route". In this research, total six experiments were performed using Korean commercial flights (B747). Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼