RISS 학술연구정보서비스

다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
          • 원문제공처
          • 등재정보
          • 학술지명
          • 주제분류
          • 발행연도
          • 작성언어
          • 저자

        오늘 본 자료

        • 오늘 본 자료가 없습니다.
        • 무료
        • 기관 내 무료
        • 유료
        • KCI등재

          Annual Greenhouse Gas Removal Estimates of Grassland Soil in Korea

          Lee, Sang Hack,Park, Hyung Soo,Kim, Young-Jin,Kim, Won Ho,Sung, Jung Jong The Korean Society of Grassland and Forage Science 2015 한국초지조사료학회지 Vol.35 No.3

          The study was conducted to determine greenhouse gas (GHG) inventories in grasslands. After 'Low Carbon Green Growth' was declared a national vision on 2008, Medium-term greenhouse gas reduction was anticipated for 30% reduction compared to Business As Usual (BAU) by 2020. To achieve the reduction targets and prepare to enforce emissions trading (2015), national GHG inventories were measured based on the 1996 Intergovernmental Panel on Climate Change Guidelines (IPCC GL). The national Inventory Report (NIR) of Korea is published every year. Grassland sector measurement was officially added in 2014. GHG removal of grassland soil was measured from 1990 to 2012. Grassland area data of Korea was used for farmland area data in the "Cadastral Statistical Annual Report (1976~2012)". Annual grassland area corresponding to the soil classification was used "Soil classification and commentary in Korea (2011)". Grassland area was divided into 'Grassland remaining Grassland' and 'Land converted to Grassland'. The accumulated variation coefficient was assumed to be the same without time series changes in grassland remaining grassland. Therefore, GHG removal of soil carbon was calculated as zero (0) in grassland remaining grassland. Since the grassland area increases constantly, the grassland soil sinks constantly . However, the land converted to grassland area continued to decrease and GHG removal of soil carbon was reduced. In 2012 (127.35Gg $CO_2$), this removal decreased by 76% compared to 1990 (535.71 Gg $CO_2$). GHG sinks are only grasslands and woodlands. The GHG removaled in grasslands was very small, accounting for 0.2% of the total. However, the study provides value by identifying grasslands as GHG sinks along with forests.

        • KCI등재

          Effect of Defaunation on In Vitro Fermentation Characteristics and Methane Emission When Incubated with Forages

          Qin, Wei-Ze,Choi, Seong-Ho,Lee, Seung-Uk,Lee, Sang-Suk,Song, Man-Kang The Korean Society of Grassland and Forage Science 2013 한국초지조사료학회지 Vol.33 No.3

          An in vitro study was conducted to determine the effects of defaunation (removal of protozoa) and forage sources (rice straw, ryegrass and tall fescue) on ruminal fermentation characteristics, methane ($CH_4$) production and degradation by rumen microbes. Sodium lauryl sulfate, as a defaunation reagent, was added into the mixed culture solution to remove ruminal protozoa at a concentration of 0.375 mg/ml. Pure cellulose (0.64 g, Sigma, C8002) and three forage sources were incubated in the bottle of culture solution of mixed rumen microbes (faunation) or defaunation for up to 24 h. The concentration of ammonia-N was high under condition of defaunation compared to that from faunation in all incubations (p<0.001). Total VFA concentration was increased at 3, 6 and 12 h (p<0.05~p<0.01) but was decreased at 24 h incubation (p<0.001) under condition of defaunation. Defaunation decreased acetate (p<0.001) and butyrate (p<0.001) proportions at 6, 12 and 24 h incubation times, but increased propionate (p<0.001) proportion at all incubation times for forages. Effective degradability of dry matter was decreased by defaunation (p<0.001). Defaunation not only decreased total gas (p<0.001) and $CO_2$ (p<0.01~0.001) production at 12 and 24 h incubations, but reduced $CH_4$ production (p<0.001) at all incubation times for all forages. The $CH_4$ production, regardless of defaunation, in order of forage sources were rice straw > tall fescue > ryegrass > cellulose (p<0.001) up to 24 h incubation.

        • KCI등재

          Effect of Goat Grazing on Surface Water Quality of Alpine Grassland

          Khan, Ali Sultan,Kim, Jeong-Tae,Kim, Dong-Woo,Park, Ha-Young,Kwon, Chan-Ho The Korean Society of Grassland and Forage Science 2018 한국초지조사료학회지 Vol.38 No.4

          The objective of this study was to determine the effect of goat grazing on the surface water quality of the alpine grasslands. Seven sites were selected across the goat farm for water sample collection and analysis. Samples were analyzed for BOD (Biological oxygen demand), total nitrogen, total phosphorous, electrical conductivity and water turbidity. All the above-mentioned parameters remained below the standard limit of Korean government at the end site. Puddles showed higher values, but below standard, as stagnant water has lower physico-chemical properties as of flowing water. The present study clearly showed that goat grazing doesn't affect water quality in grasslands if grazing is according to carrying capacity of grassland and fertilizer application is judicious.

        • KCI등재

          Analysis of Feed Value and Usability of Soybean Varieties as Livestock Forage

          Park, Myoung Ryoul,Seo, Min-Jung,Yun, Hong-Tae,Park, Chang-Hwan The Korean Society of Grassland and Forage Science 2017 한국초지조사료학회지 Vol.37 No.2

          This experiment was conducted to evaluate feed value and usability of soybean varieties as livestock forage. In this study, three soybean cultivars, OT93-26, Geomjeongsaeol, and Pungwon, were harvested at R5 (beginning seed development)- and R6 (full seed)-reproductive stages for analyzing feed value of soybean. Days to R5 stage harvest of OT93-26 among the three soybean cultivars was 55 days and the shortest while Pungwon took 103 days to reach at R6 stage. The R6-harvested soybeans had higher dry matter (DM) yields and crude protein (CP) content than the R5-harvested. However, both DM and CP were the highest in the R6-harvested Geomjeongsaeol. Contents of neutral detergent fiber (NDF) and acid detergent fiber (ADF) of Pungwon harvested at R5 were the highest whereas the R6-harvested Geomjeongsaeol had the lowest. Digestible dry matter (DDM), dry matter intake (DMI), and relative feed value (RFV) of the R6-harvested Geomjeongsaeol and Pungwon were higher than those of the R5-harvested, but in case of OT93-26, those at R6 stage were low rather than those at R5 stage. However, soybean could be used as alternative forage with high feed value for livestock. Taken together, Geomjeongsaeol could be used for developing new forage soybean varieties with high feed value, and R6 would be the optimum harvesting stage for yield and quality of forage soybean.

        • KCI등재

          An Overview of Teff (Eragrostis teff Zuccagni) Trotter) as a Potential Summer Forage Crop in Temperate Systems

          Habte, Ermias,Muktar, Meki S.,Negawo, Alemayehu T.,Lee, Sang-Hoon,Lee, Ki-Won,Jones, Chris S. The Korean Society of Grassland and Forage Science 2019 한국초지조사료학회지 Vol.39 No.3

          The production of traditional cool season grasses in temperate regions is becoming hampered during summer seasons due to water deficit. Thus, incorporating water use efficient warm season annual grasses are generally considered to fill the gap of summer season forage reduction that would offer considerable flexibility and adaptability to respond to forage demand. Teff (Eragrostis teff Zuccagni) Trotter) is, a C4 drought tolerant warm season annual grass primarily grown for grain production, recently gaining interest for forage production particularly during summer season. Previous reports have showed that teff is palatable and has comparable forage biomass and feed quality as compared to other warm season annual grasses which would make it an alternative forage. However, the available data are not comprehensive to explore the potential of teff as forage, hence further assessment of genotype variability and performance along with compatibility study of teff with forage production system of specific environment is key for future utilization.

        • KCI등재

          Review of the Current Forage Production, Supply, and Quality Measure Standard in South Korea

          Kim, Jong Duk,Seo, Myeongchon,Lee, Sang Cheol,Han, Kun-Jun The Korean Society of Grassland and Forage Science 2020 한국초지조사료학회지 Vol.40 No.3

          Cattle feeding in South Korea has been heavily dependent on domestically produced rice straw and imported grain. Around 42% of domestically produced rice straw is utilized for forage, and the remainder is recycled to restore soil fertility. Approximately 35% of round baleages were made with rice straw. However, higher quality hay is desired over rice straw. Due to increasing stockpiles of rice, there has been an economic burden on the government to store the surplus; therefore production of annual forage crops in rice fields has been further promoted in recent years. Hay import from the USA currently constitutes more than 80% of total imported hays. The main imported hays are alfalfa (Medicago sativa), timothy (Phleum pretense), and tall fescue (Festica arundinacea). The estimated forage required for cattle feeding was approximately 5.4 million MT in 2016. Domestically produced forage sates only 43% of that value, while low quality rice straw and imported hay covered the rest of demand by 33% and 20%, respectively. As utilization of domestically produced forage is more desirable for forage-based cattle production, long-term strategies have been necessary to promote domestic production of high quality baleage. One such strategy has been utilizing the fertile soil and abundance of fallow rice fields of western region of S. Korea to produce forage crops. Italian ryegrass (Lolium multiflorum) is the most successfully produced winter annual in the region and is approximately 56% of the total winter annual forage production. Forage sorghums (Sorghum bicolor), sorghum × sudangrass hybrids, and hybrid corn (Zea mays) produce a substantial amount of warm-season forage during summer. Produced forage has been largely stored through baleage due to heavy dew and frequent rains and has been evaluated according to S. Korea's newly implemented baleage commodity evaluation system. The system weighs 50% of its total grading points on moisture content because of its importance in deliverable DM content and desirable baleage fermentation; this has proved to be an effective method. Although further improvement is required for the future of forage production in South Korea, the current government-led forage production in rice fields has been able to alleviate some of the country's shortage for quality hay.

        • KCI등재

          Prediction of Chemical Composition and Fermentation Parameters in Forage Sorghum and Sudangrass Silage using Near Infrared Spectroscopy

          Park, Hyung-Soo,Lee, Sang-Hoon,Choi, Ki-Choon,Kim, Ji-Hye,So, Min-Jeong,Kim, Hyeon-Seop The Korean Society of Grassland and Forage Science 2015 한국초지조사료학회지 Vol.35 No.3

          This study was conducted to assess the potential of using NIRS to accurately determine the chemical composition and fermentation parameters in fresh coarse sorghum and sudangrass silage. Near Infrared Spectroscopy (NIRS) has been increasingly used as a rapid and accurate method to analyze the quality of cereals and dried animal forage. However, silage analysis by NIRS has a limitation in analyzing dried and ground samples in farm-scale applications because the fermentative products are lost during the drying process. Fresh coarse silage samples were scanned at 1 nm intervals over the wavelength range of 680~2500 nm, and the optical data were obtained as log 1/Reflectance (log 1/R). The spectral data were regressed, using partial least squares (PLS) multivariate analysis in conjunction with first and second order derivatization, with a scatter correction procedure (standard normal variate and detrend (SNV&D)) to reduce the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The results of this study showed that NIRS predicted the chemical constituents with a high degree of accuracy (i.e. the correlation coefficient of cross validation ($R^2{_{cv}}$) ranged from 0.86~0.96), except for crude ash which had an $R^2{_{cv}}$ of 0.68. Comparison of the mathematical treatments for raw spectra showed that the second-order derivatization procedure produced the best result for all the treatments, except for neutral detergent fiber (NDF). The best mathematical treatment for moisture, acid detergent fiber (ADF), crude protein (CP) and pH was 2,16,16 respectively while the best mathematical treatment for crude ash, lactic acid and total acid was 2,8,8 respectively. The calibrations of fermentation products produced poorer calibrations (RPD < 2.5) with acetic and butyric acid. The pH, lactic acid and total acids were predicted with considerable accuracy at $R^2{_{cv}}$ 0.72~0.77. This study indicated that NIRS calibrations based on fresh coarse sorghum and sudangrass silage spectra have the capability of assessing the forage quality control

        • KCI등재

          Prediction of the Chemical Composition and Fermentation Parameters of Fresh Coarse Italian Ryegrass Haylage using Near Infrared Spectroscopy

          Kim, Ji Hye,Park, Hyung Soo,Choi, Ki Choon,Lee, Sang Hoon,Lee, Ki-Won The Korean Society of Grassland and Forage Science 2017 한국초지조사료학회지 Vol.37 No.4

          Near infrared spectroscopy (NIRS) is a rapid and accurate method for analyzing the quality of cereals, and dried animal forage. However, one limitation of this method is its inability to measure fermentation parameters in dried and ground samples because they are volatile, and therefore, respectively lost during the drying process. In order to overcome this limitation, in this study, fresh coarse haylage was used to test the potential of NIRS to accurately determine chemical composition and fermentation parameters. Fresh coarse Italian ryegrass haylage samples were scanned at 1 nm intervals over a wavelength range of 680 to 2500 nm, and optical data were recorded as log 1/reflectance. Spectral data, together with first- and second-order derivatives, were analyzed using partial least squares (PLS) multivariate regressions; scatter correction procedures (standard normal variate and detrend) were used in order to reduce the effect of extraneous noise. Optimum calibrations were selected based on their low standard error of cross validation (SECV) values. Further, ratio of performance deviation, obtained by dividing the standard deviation of reference values by SECV values, was used to evaluate the reliability of predictive models. Our results showed that the NIRS method can predict chemical constituents accurately (correlation coefficient of cross validation, $R_{cv}^2$, ranged from 0.76 to 0.97); the exception to this result was crude ash ($R_{cv}^2=0.49$ and RPD = 2.09). Comparison of mathematical treatments for raw spectra showed that second-order derivatives yielded better predictions than first-order derivatives. The best mathematical treatment for DM, ADF, and NDF, respectively was 2, 16, 16, whereas the best mathematical treatment for CP and crude ash, respectively was 2, 8, 8. The calibration models for fermentation parameters had low predictive accuracy for acetic, propionic, and butyric acids (RPD < 2.5). However, pH, and lactic and total acids were predicted with considerable accuracy ($R_{cv}^2$ 0.73 to 0.78; RPD values exceeded 2.5), and the best mathematical treatment for them was 1, 8, 8. Our findings show that, when fresh haylage is used, NIRS-based calibrations are reliable for the prediction of haylage characteristics, and therefore useful for the assessment of the forage quality.

        • KCI등재

          Sulphur Supply Level Effects on the Assimilation of Nitrate and Sulphate into Amino Acids and Protein in Forage Rape (Brassica napus L.)

          Lee, Bok-Rye,Kim, Tae-Hwan The Korean Society of Grassland and Forage Science 2012 한국초지조사료학회지 Vol.32 No.4

          Sulphur deficiency has become widespread over the past several decades in most of the agricultural area. Oilseed rape (Brassica napus L.) is a very sensitive to S limitation which is becoming reduction of quality and productivity of forage. Few studies have assessed the sulphur mobilization in the source-sink relationship, very little is known about the regulatory mechanism in interaction between sulphur and nitrogen during the short-term sulphur deficiency. In this study, therefore, amount of sulphur and nitrogen incorporated into amino acids and proteins as affected by different S-supplied level (Control: 1 mM ${SO_4}^{2-}$, S-deficiency: 0.1 mM ${SO_4}^{2-}$, and S-deprivation: 0 mM ${SO_4}^{2-}$) were examined. The amount of sulphur in sulphate (S-sulphate) was significantly decreased by 25.8% in S-deprivation condition, compare to control, but not nitrogen in nitrate (N-nitrate). The markedly increase of sulphur and nitrogen incorporated amino acids (S-amino acids and N-amino acids) was observed in both S-deficiency and S-deprivation treatments. The amount of nitrogen incorporated proteins (N-protein) was strongly decreased as sulphur availability while the amount of sulphur incorporated into proteins (S-protein) was not affected. A highly significant ($p{\leq}0.001$) relationship between S-sulphate and S-amino acid was observed whereas the increase of N-amino acids is closely associated with decrease of N-proteins. These data indicate that increase of sulphur and nitrogen incorporated into amino acids was from different nitrogen and sulphur metabolites, respectively

        • KCI등재

          Effects of Charcoal Application on Ammonia Emission and Nitrogen Use Efficiency of Pig Slurry in the Vegetative Growth of Maize (Zea Mays L.)

          Lee, Seung Bin,Park, Sang Hyun,Kim, Tae Hwan The Korean Society of Grassland and Forage Science 2021 한국초지조사료학회지 Vol.41 No.4

          The objective of this study was to prove the effect of pig slurry application with charcoal on nitrogen use efficiency (NUE), feed value and ammonia (NH<sub>3</sub>) emission from maize forage. The four treatments were applied: 1) non-pig slurry (only water as a control), 2) only pig slurry application (PS), 3) pig slurry application with large particle charcoal (LC), 4) pig slurry application with small particle charcoal (SC). The pig slurry was applied at a rate of 150 kg N ha<sup>-1</sup>, and the charcoal was applied at a rate of 300 kg ha-1 regardless of the size. To determine the feed value of maize, crude protein, dry matter intake, digestible dry matter, total digestible nutrient, and relative feed value were investigated. All feed value was increased by charcoal treatment compared to water and PS treatment. Also, the NUE for plant N was significantly higher in charcoal treatments (LC and SC) compared to PS treatment. On the other hand, there is no significant difference for feed value and NUE between LC and SC. The NH<sub>3</sub> emission was significantly reduced 15.2% and 27.9% by LC and SC, respectively, compared to PS. Especially, SC significantly decreased NH<sub>3</sub> emission by 15% compared to LC. The present study clearly showed that charcoal application exhibited positive potential in nitrogen use efficiency, feed value and reducing N losses through NH<sub>3</sub> emission.

        연관 검색어 추천

        활용도 높은 자료

        이 검색어로 많이 본 자료