http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Artificial Adhesive Surfaces Mimicking Gecko Setae: Novel Approaches in Surface Engineering
Singh, R. Arvind,Yoon, Eui-Sung Korean Tribology Society 2008 KSTLE International Journal Vol.9 No.1
Surface Engineering is a field closely related to Tribology. Surfaces are engineered to reduce adhesion, friction and wear between moving components in engineering applications. On the contrary, it is also necessary to have high adhesion between surfaces so as to hold/stick surfaces together. In this context, surface engineering plays an important role. In recent times, scientists are drawing inspiration from nature to create effective artificial adhesive surfaces. This article provides some examples of novel surface engineering approaches conducted by various research groups worldwide that have significantly contributed in the creation of bio-inspired artificial adhesive surfaces.
Micro/nano Tribological and Water Wetting Characteristics of Ion Beam Treated PTFE Surfaces
Yoon, Eui-Sung,Oh, Hyun-Jin,Yang, Seung-Ho,Kong, Hosung Korean Tribology Society 2002 KSTLE International Journal Vol.3 No.1
Micro/nano tribological and water wetting characteristics of ion beam treated PTFE (polytetrafluoroethylene) surfaces were experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun at different argon ion dose conditions in a vacuum chamber to modify the topography of PTFE surface. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribe tester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. Water wetting angle of the ion beam treated samples increased with the ion dose, so the surface shows an ultra-hydrophobic nature. Micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-tribological characteristics showed different results. The scale effect of surface topography on tribological characteristics was discussed. Also, the water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.
Electrorheological Performance of Chitosan Sebacicate Suspension as an Anhydrous ER Fluid
Choi, Ung Su,Ko, Young Gun,Jee, Han Soon,Lee, Sang Shun Korean Tribology Society 2001 KSTLE International Journal Vol.2 No.1
The electrorheological(ER) performance of a chitosan sebaciate suspension in silicone oil was investigated by varying the electric fields, volume fractions of particles, and shear rates, respectively. The chitosan sebacicate susepnsion showed a typical ER response caused by the polarizability of an amide polar group and shear yield stress due to the formation of multiple chains upon application of an electric field. The shear stress for the suspension exhibited a linear dependence on the volume fraction of particles and an electric field power of 1.88. On the basis of the results, the newly synthesized chitosan sebacicate suspension was found to be an anhydrous ER fluid.
Shape Study of Wear Debris in Oil-Lubricated System with Neural Network
Park, Heung-Sik,Seo, Young-Baek,Cho, Yon-Sang Korean Tribology Society 2001 KSTLE International Journal Vol.2 No.1
The wear debris is fall off the moving surfaces in oil-lubricated systems and its morphology is directly related to the damage and failure to the interacting surfaces. The morphology of the wear particles are therefore directly indicative of wear processes occurring in tribological system. The computer image processing and artificial neural network was applied to shape study and identify wear debris generated from the lubricated moving system. In order to describe the characteristics of various wear particles, four representative parameter (50% volumetric diameter, aspect, roundness and reflectivity) from computer image analysis for groups of randomly sampled wear particles, are used as inputs to the network and learned the friction condition of five values (material 3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameters learned. The three kinds of the wear debris had a different pattern characteristics and recognized the friction condition and materials very well by neural network. We discuss how these approach can be applied to condition diagnosis of the oil-lubricated tribological system.
A Parametric Study on the Characteristics of the Oil-Lubricated Wave Journal Bearing
Suh, Hyun-Seung,Rhim, Yoon-Chul Korean Tribology Society 2001 KSTLE International Journal Vol.2 No.1
A new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performance of a hydrodynamic journal bearing. This concept features a wave in bearing surface. Not only straight but also twisted wave journal bearings are investigated numerically. The performances of straight and twisted bearings are compared to a plain journal bearing over a wide range of eccentricity. The bearing load and stability characteristics are dependent on the geometric parameters such as the number of waves, the amplitude and the starting point of the wave relative to the applied load direction. The bearing performance is analyzed for various configurations and for both cases of smooth and wave member notation. The wave journal bearing, especially for the twisted one, offers better stability than the plain journal bearing under all eccentricity ratios and load orientation.
Lee, Kwon-Yong Korean Tribology Society 2001 KSTLE International Journal Vol.2 No.1
The most widely-used orthopaedic grade polymer bearing liner material, ultrahigh molecular weight polyethylene (UHMWPE), for the total joint arthroplasty degrades after gamma-irradiation sterilization through the progressive oxidation in a shelf and in vivo. Oxidative degradation makes UHMWPE brittle and leads to decrease in mechanical properties. In this study the relationship between post-gamma-irradiation aging time and wear of UHMWPE was investigated. Six retrieved polyethylene hip liners implanted for 3-16 years and then stored in air for 1.5-6.5 years until tests were used. Two types of pin-on-disk wear testing were conducted by the uni-directional repeat pass rotating and by the linear reciprocating stainless steel disks against stationary polyethylene pins under 4Mpa at 1Hz with bovine serum lubrication in ambient environment. Wear of retrieved polyethylene hip liners does not have direct correlation with in vivo or total aging time. Linear reciprocal sliding motion generated more remarkable wear than uni-directional repeat pass sliding motion. It indicates that kinematic motion affects very crucially on the wear of aged UHMWPE having brittle white band region.
A Study on the Air-Lubricated Herringbone Groove Journal Bearing by Finite Element Method
Park, Shin Wook,Rhim, Yoon Chul Korean Tribology Society 2001 KSTLE International Journal Vol.2 No.1
The herringbone groove journal bearing (HGJB) has chevron type grooves on stationary or rotating member of the bearing so that they pump the lubricant inward the grooves when journal rotates. As a result, the pressure is generated around the journal so that the radial stiffness and dynamic stability are improved comparing to the plain journal bearing (PJB) when the bearing operates near the concentric condition. The narrow groove theory, conventionally adopted to simulate the concentric operation of HGJB, is limited to the infinite number of grooves. A numerical study of air-lubricated HGJB is presented for the finite number of grooves. The compressible isothermal Reynolds equation is solved by using Finite Element Method together with the Newton-Raphson iterative procedure and perturbation method. The solutions render the static and dynamic performances of HGJB. Comparison of present results with a PJB validates previously published finite difference solution. The HGJB's geometric parameters influence its static and dynamic characteristics. The optimum geometric parameters are presented for the air-lubricated HGJB in particular conditions.
The Effects of Design Parameters on the Friction Characteristics in the Valve Train System
Kim, Ji-Young,Han, Dong-Chul,Cho, Myung-Rae Korean Tribology Society 2001 KSTLE International Journal Vol.2 No.1
This paper is a report on the parametric study of the friction characteristics on the direct acting type OHC valve train system. The numerical simulation was performed by using the IV-TAP. Dynamic analysis by using the lumped mass method was previously performed to define the acting load. The friction characteristics were analyzed by using the partial asperity contact model. The effects of operating conditions and major design parameters on the total driving torque were investigated. From the analytical prediction, it is found that valve spring stillness, surface roughness, and base circle radius are the main factors to reduce the frictional loss on the valve train system.
On the Sealing Characteristics Analysis and Design of Bi-Polymer O-ring Seals
Kim, Chung Kyun,Ko, Young Bae,Cho, Seung Hyun Korean Tribology Society 2001 KSTLE International Journal Vol.2 No.1
The paper deals with a non-linear finite element analysis of the thermomechanical distortions of an elastomeric O-ring seal including a temperature gradient. Axial compression of O-ring seals, as well as the influence of the temperature gradients and various O-ring seal models, are investigated based on the axisymmetric analysis. The highest temperature occurs near the interface of the O-ring between the dovetail groove bottom and the O-ring seal. The calculated FEM results indicate that the composite O-ring with the diametral ratio, 0.8 shows very stable and recommendable compared with other seal models far elevated temperatures and corrosive environments.
A Study on the Characteristics of Work Roll Texturing for Temper Mill
Kim, Soon Kyung,Kim, Moon Kyung,Shahajwalla, Veena,Chung, Uoo Chang Korean Tribology Society 2001 KSTLE International Journal Vol.2 No.1
The purpose of this paper is to show the result from the study to improve the formability and appearance which is important in the cold rolled strip, the coated strip and prepainted strip. Furthermore, to give appropriate surface roughness, shape of work roll for temper mill is also important. The strip has a greater peak counts and homogeneous roughness. This makes the prepainted surface smooth and consistent in appearance with good image clarity. Therefore, the surface roughness of the work roll is very important. The reason that surface roughness of the work roll is transferred to the strip surface is the rolling farce and tension at the temper rolling or cold rolling. This study is classified in order to get an accurate and homogeneous roughness. There are few papers published in this field, because its importance is not known and the proper operation of the machine is not generally well known. This paper investigates the correlation between strip surface roughness and the surface of the work roll. After studying the surface roughness and shape according to the texturing method for roll surfaces at temper rolling, the findings were as follows. Irregular surface roughness can be compensated with several paint coatings, but this also makes the quality deteriorate and manufacturing costs go up.